工程力学 ›› 2020, Vol. 37 ›› Issue (1): 34-42.doi: 10.6052/j.issn.1000-4750.2019.02.0047

• 基本方法 • 上一篇    下一篇

数据稀缺与更新条件下基于概率密度演化-测度变换的认知不确定性量化分析

万志强, 陈建兵   

  1. 同济大学土木工程防灾国家重点实验室, 土木工程学院, 上海 200092
  • 收稿日期:2019-02-21 修回日期:2019-05-16 出版日期:2020-01-29 发布日期:2019-05-23
  • 通讯作者: 陈建兵(1975-),男,湖北人,教授,博士,博导,主要从事随机动力学与控制及结构可靠度研究(E-mail:chenjb@tongji.edu.cn). E-mail:chenjb@tongji.edu.cn
  • 作者简介:万志强(1992-),男,重庆人,博士生,主要从事随机动力学与不确定性量化研究(E-mail:wanzhiqiang@tongji.edu.cn).
  • 基金资助:
    国家杰出青年科学基金项目(51725804);国家自然科学基金重点项目(51538010);上海市国际合作重点项目(18160712800)

QUANTIFICATION OF EPISTEMIC UNCERTAINTY DUE TO DATA SPARSITY AND UPDATING BASED ON THE FRAMEWORK VIA SYNTHESIZING PROBABILITY DENSITY EVOLUTION METHOD AND CHANGE OF PROBABILITY MEASURE

WAN Zhi-qiang, CHEN Jian-bing   

  1. Stake Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2019-02-21 Revised:2019-05-16 Online:2020-01-29 Published:2019-05-23

摘要: 工程设计中往往需要同时处理固有不确定性与认知不确定性。对于固有不确定性分析与量化,国内外已有诸多研究,例如Monte Carlo方法、正交多项式展开理论和概率密度演化理论等。而对认知不确定性、特别是固有不确定性与认知不确定性耦合情况下的研究,则还相对缺乏。该文中,针对数据稀缺与数据更新导致的认知不确定性,首先分别引入Bootstrap方法和Bayes更新方法进行不确定性表征。在此基础上,结合基于概率密度演化-测度变换的两类不确定性量化统一理论新框架,提出了存在认知不确定性情况下的不确定性传播与可靠性分析高效方法及其具体数值算法。由此,给出了基于数据进行工程系统不确定性量化、传播与可靠性分析的基本途径。通过具有工程实际数据的3个工程实例分析,包括无限边坡稳定性分析、挡土墙稳定性分析和屋面桁架结构可靠性分析,验证了该文方法的精度和效率。

关键词: 不确定性量化, 认知不确定性, 固有不确定性, 概率密度演化, 概率测度变换

Abstract: Aleatory uncertainty and epistemic uncertainty generally exist simultaneously in engineering design. A variety of studies, including, e.g., the Monte Carlo simulation, orthogonal polynomial expansion and probability density evolution method, have been carried out in terms of the aleatory uncertainty. However, rather limited attention has been paid to the epistemic uncertainty, especially the coupling of aleatory and epistemic uncertainty. In the present paper, in order to represent the epistemic uncertainty due to data sparsity or data updating, the Bootstrap method and Bayesian update method are introduced, respectively. Further, the newly developed compatible framework via synthesizing the probability density evolution method (PDEM) and the change of probability measure (COM) is incorporated to develop a highly efficient approach for the quantification and propagation of uncertainty and reliability evaluation of systems involving not only aleatory but also epistemic uncertainty. Numerical algorithms are elaborated. Therefore, a path from observed data to quantification and propagation of uncertainty and reliability evaluation is shaped. Three engineering cases with real data, including a stability analysis of infinite slope model, a stability analysis of retaining wall model, and a reliability analysis of roof truss structure, are illustrated, demonstrating the accuracy and efficiency of the proposed method.

Key words: uncertainty quantification, epistemic uncertainty, aleatory uncertainty, probability density evolution method (PDEM), change of probability measure (COM)

中图分类号: 

  • TB114.3
[1] 王华琪, 赵鸣, 李杰等. 混凝土强度统计数据的分析与应用[J]. 同济大学学报(自然科学版), 2007, 35(7):861-865. Wang Huaqi, Zhao Ming, Li Jie, et al. Analysis and application of statistical data about concrete strength[J]. Journal of Tongji University (Natural Science), 2007, 35(7):861-865. (in Chinese)
[2] 唐小松, 李典庆, 曹子君等. 有限数据条件下边坡可靠度分析的Bootstrap方法[J]. 岩土力学, 2016, 37(3):893-911. Tang Xiaosong, Li Dianqing, Cao Zijun, et al. A Bootstrap method for analyzing slope reliability based on limited shear-strength parameter data[J]. Rock and Soil Mechanics, 2016, 37(3):893-911. (in Chinese)
[3] Li D Q, Zhang L, Tang X S, et al. Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability[J]. Computers and Geotechnics, 2015, 68:184-195.
[4] Enright M P, Frangopol D M. Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion[J]. Engineering Structures, 1998, 20(11):960-971.
[5] Der Kiureghian A, Ditlevsen O. Aleatory or epistemic? Does it matter?[J]. Structural Safety, 2007, 31:105-112.
[6] Ang A H-S, Tang W. 工程中的概率概念[M]. 陈建兵, 彭勇波, 刘威, 艾晓秋, 译. 北京:中国建筑工业出版社, 2017. Ang A H-S, Tang W. Probability concepts in engineering[M]. Translate by Chen Jianbing, Peng Yongbo, Liu Wei,Ai Xiaoqiu. Hoboken:John Wiley & Sons, 2006. (in Chinese)
[7] Roy C J, Oberkampf W L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200:2131-2144.
[8] Ellingwood B R, Kinali K. Quantifying and communicating uncertainty in seismic risk assessment[J]. Structural Safety, 2009, 31:179-187.
[9] Sankararaman S, Mahadevan S. Distribution type uncertainty due to sparse and imprecise data[J]. Mechanical System and Signal Processing, 2013, 37:182-198.
[10] 王攀, 吕震宙, 程蕾. 不确定概率分布下的重要性测度及稀疏网格解[J]. 中国科学:技术科学, 2013, 43(10):1094-1100. Wang Pan, Lv Zhenzhou, Cheng Lei. Importance measures for imprecise probability distributions and their sparse grid solutions[J]. Scientia Sinica Technologica, 2013, 56:1094-1100. (in Chinese)
[11] Efron B, Tibshirani R J. An Introduction to the Bootstrap[M]. New York:Chapman & Hall, 1993.
[12] Nie J S, Ellingwood B R. Directional methods for structural reliability analysis[J]. Structural Safety, 2000, 22:233-249.
[13] Kleiber M, Hien T D. The Stochastic finite element method:basic perturbation technique and computer implementation[M]. New York:John Wiley & Sons, 1992.
[14] Ghanem R, Spanos P D. Polynomial chaos in stochastic finite elements[J]. Journal of Applied Mechanics, 1990, 57(1):197-202.
[15] Li J, Chen J B. Stochastic dynamics of structures[M]. Singapore:John Wiley & Sons, 2009.
[16] Jiang Z M, Li J. High dimensional structural reliability with dimension reduction[J]. Structural Safety, 2017, 69:35-46.
[17] Chen J B, Wan Z Q. A compatible probabilistic framework for quantification of simultaneous aleatory and epistemic uncertainty of basic parameters of structures by synthesizing the change of measure and change of random variables[J]. Structural Safety, 2019, 78:76-87.
[18] 何淅淅, 郑学成, 杜社勇. 粉煤灰混凝土强度统计特性的试验研究[J]. 土木工程学报, 2011, 44:59-65. He Xixi, Zheng Xuecheng, Du Sheyong. The experimental studies on the statistical characteristics of fly ash concrete strength[J]. China Civil Engineering Journal, 2011, 44:59-65. (in Chinese)
[19] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9):135-144. Yu Bo, Tao Boxiong, Liu Shengbin. A probabilistic model for peak stress of concrete confined by ties[J]. Engineering Mechanics, 2018, 35(9):135-144. (in Chinese)
[20] 陈建兵, 李杰. 结构随机地震反应与可靠度的概率密度演化分析研究进展[J]. 工程力学, 2014, 31(4):1-10. Chen Jianbing, Li Jie. Probability density evolution method for stochastic seismic response and reliability of structures[J]. Engineering Mechanics, 2014, 31(4):1-10. (in Chinese)
[21] Chen J B, Yang J Y, Li J. A GF-discrepancy for point selection in stochastic seismic response analysis of structures with uncertain parameters[J]. Structural Safety, 2016, 59:20-31.
[22] Grigoriu M. Stochastic calculus:application in science and engineering[M]. New York:Springer Science + Business Media, 2002.
[23] Li J, Chen J B, Fan W L. The equivalent-value event and evaluation of the structural system reliability[J]. Structural Safety, 2007, 29:112-131.
[24] Song S F, Lu Z Z, Qiao H W. Subset simulation for structural reliability sensitivity analysis[J]. Reliability Engineering and System Safety, 2009, 94:658-665.
[25] 梅刚. 基于非线性随机有限元的结构可靠度问题研究[D]. 北京:清华大学, 2005. Mei Gang. Research on structural reliability by nonlinear stochastic finite element method[D]. Beijing:Tsinghua University, 2005. (in Chinese)
[26] Xu T Z, Li J. Assessing the spatial variability of the concrete by the rebound hammer test and compression test of drilled cores[J]. Construction and Building Materials, 2018, 188:820-832.
[1] 梅真, 郭子雄, 高毅超. 基于模型结构振动台试验的概率密度演化方法验证[J]. 工程力学, 2017, 34(3): 54-61.
[2] 刘蕾蕾, 白雪濛, 徐腾飞. 钢筋混凝土梁时变变形的概率密度演化[J]. 工程力学, 2015, 32(增刊): 136-141.
[3] 刘章军, 王磊, 黄帅. 非平稳随机地震作用的结构整体可靠度分析[J]. 工程力学, 2015, 32(12): 225-232.
[4] 刘勇,陈炉云,易宏. 基于裂纹扩展尺寸概率密度演化法的疲劳可靠性预测方法研究[J]. 工程力学, 2014, 31(9): 37-41.
[5] 陈建兵,李杰. 结构随机地震反应与可靠度的概率密度演化分析研究进展[J]. 工程力学, 2014, 31(4): 1-10.
[6] 徐亚洲,李 杰. 近海风力发电高塔波浪动力可靠度分析[J]. 工程力学, 2013, 30(3): 395-401, 409.
[7] 范文亮. 包含突变过程的结构时变可靠度的概率密度演化方法及其应用[J]. 工程力学, 2013, 30(12): 43-48,56.
[8] 徐亚洲, 白国良. 考虑混凝土材料变异性的超大型冷却塔随机屈曲承载力分析[J]. 工程力学, 2012, 29(8): 208-212.
[9] 范文亮, 陈朝晖, 余德祥, 王清. 基于概率密度演化理论的重庆市降雨概率结构研究[J]. 工程力学, 2012, 29(7): 154-162.
[10] 范文亮;李 杰. 不同抗震区结构承载力裕度的概率结构分析与比较[J]. 工程力学, 2011, 28(2): 69-074,.
[11] 柳春光;李会军. 多维多点地震激励下随机K8单层球面网壳的可靠度分析[J]. 工程力学, 2010, 27(12): 21-026,.
[12] 陈建兵;李杰. 随机结构复合随机振动分析的概率密度演化方法[J]. 工程力学, 2004, 21(3): 90-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 刘灵灵;张 婷;孔艳平;王令刚. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学, 2009, 26(8): 184 -188 .
[3] 蔡松柏;沈蒲生;胡柏学;邓继华. 基于场一致性的2D四边形单元的共旋坐标法[J]. 工程力学, 2009, 26(12): 31 -034 .
[4] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[5] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[6] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[7] 简 斌;翁 健;金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 -211, .
[8] 富东慧;侯振德;秦庆华. 切槽对骨压电电压的影响[J]. 工程力学, 2011, 28(1): 233 -237 .
[9] 郭彦林;王永海. 两层通高区群柱面外稳定性能与设计方法研究[J]. 工程力学, 2011, 28(6): 52 -059 .
[10] 王 岚;常春清;邢永明. 胶粉改性沥青混合料弯曲蠕变试验研究[J]. 工程力学, 2011, 28(增刊I): 40 -043 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日