工程力学 ›› 2019, Vol. 36 ›› Issue (9): 197-204,212.doi: 10.6052/j.issn.1000-4750.2019.02.0044

• 土木工程学科 • 上一篇    下一篇

基于抗规和隔规的RC框架隔震结构设计对比

尹传印1, 解琳琳1,2, 李爱群1,2,3, 曾德民1, 陈曦4, 閤东东4, 杨参天1,2,3   

  1. 1. 北京建筑大学土木与交通工程学院, 北京 100044;
    2. 北京建筑大学“工程结构与新材料”北京市高等学校工程研究中心, 北京 100044;
    3. 东南大学土木工程学院, 南京 210096;
    4. 北京市建筑设计研究院有限公司, 北京 100045
  • 收稿日期:2019-02-20 修回日期:2019-05-19 出版日期:2019-09-25 发布日期:2019-05-23
  • 通讯作者: 解琳琳(1986-),男,江苏南通人,讲师,博士,主要从事高层和超高层抗震设计研究(E-mail:xielinlin@bucea.edu.cn). E-mail:xielinlin@bucea.edu.cn
  • 作者简介:尹传印(1994-),男,山东德州人,硕士生,主要从事隔震结构研究(E-mail:ycybucea@163.com);李爱群(1962-),男,湖南耒阳人,教授,博士,博导,主要从事工程防灾减灾研究(E-mail:liaiqun@bucea.edu.cn);曾德民(1970-),男,吉林公主岭人,研究员,博士,主要从事结构隔震减震技术及城市防灾减灾研究(E-mail:zengdemin@vip.163.com);陈曦(1987-),男,江苏盐城人,高工,硕士,主要从事结构抗震研究(E-mail:cx8171@126.com);閤东东(1984-),男,湖北随州人,高工,博士,主要从事结构抗震研究(E-mail:gddhust@163.com);杨参天(1993-),男,山西晋城人,博士生,主要从事高层隔震结构研究(E-mail:yangcantian@outlook.com).
  • 基金资助:
    北京市自然科学基金项目(8192008);北京市教委科技一般项目(KM201910016014);市属高校基本科研业务费项目(X18128);北京建筑大学研究生创新项目(PG2019029,PG2019033);长江学者和创新团队发展计划资助项目(IRT_17R06)

COMPARISON ON THE SEISMIC DEISGN OF BASE-ISOLATED RC FRAMES USING TWO CHINESE CODES

YIN Chuan-yin1, XIE Lin-lin1,2, LI Ai-qun1,2,3, ZENG De-min1, CHEN Xi4, GE Dong-dong4, YANG Can-tian1,2,3   

  1. 1. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    2. Beijing Higher Institution Engineering Research Center of Civil Engineering Structure and Renewable Material, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    3. School of Civil Engineering, Southeast University, Nanjing 210096, China;
    4. Beijing Institute of Architectural Design, Beijing 100045, China
  • Received:2019-02-20 Revised:2019-05-19 Online:2019-09-25 Published:2019-05-23

摘要: 未来我国隔震设计将存在两个依据,包括抗规(《建筑抗震设计规范》)和隔规(《建筑隔震设计标准》),两种规范的设计方法和关键设计指标存在显著差别,而关于两种规范的设计对比研究还相对较少。该文以RC框架隔震结构为基本研究对象,基于两种规范设计了具有不同结构高度的3组6个案例,明确了基于隔规设计的控制因素,对比分析了基于两种规范设计的结构的地震响应和经济性差别。该文研究结果表明基于隔规设计的控制因素为底部剪力比。相比于抗规,基于隔规设计时上部结构可采用更柔的设计方案,上部结构地震作用存在15%~20%左右的降低,但由于上部结构刚度降低程度大于地震作用降低程度,导致上部结构最大层间位移角增大。随着结构高度的增加,最大层间位移角增大程度显著增加。在材料用量方面,基于隔规设计时混凝土用量存在7.7%~12.1%的减小,钢筋用量则存在11.02%~26.29%的增加;随着结构高度的增加,混凝土用量减少程度逐渐增大,而钢筋用量增大程度逐渐减小。该文的研究成果可为RC框架隔震结构的设计提供重要参考。

关键词: RC框架隔震结构, 隔震规范, 抗震规范, 设计对比, 材料用量

Abstract: There will be two seismic design codes for the base-isolated structures in the near future in China, including Code for Seismic Design of Buildings and Code of Design for Seismic Isolated Buildings. It is notable that significant differences exist in terms of design methods and critical design indexes between these two codes. However, comparisons on the seismic design of base-isolated structures using these two codes are rarely reported. The seismically isolated reinforced concrete (RC) frame structure is herein selected as the study subject. Using three pairs of structure cases with different heights which were designed according to the two codes, the controlling factor for the seismic design of such structures using Code of Design for Seismic Isolated Buildings was identified. In addition, the seismic responses and economic investment of such structures designed according to the two codes were compared and analyzed. The results indicate that the abovementioned controlling factor is base shear ratio. For the superstructure, a smaller stiffness is selected if Code of Design for Seismic Isolated Buildings is adopted, and the corresponding seismic load reduces by approximately 15%~20% in comparison with that designed following Code for Seismic Design of Buildings. However, because the degree of stiffness reduction of superstructure is greater than that of seismic load reduction, a significant increase of maximum inter-story drift ratio (i.e., θmax) of superstructure is observed. Furthermore, the increment of θmax basically increases with the increase of total height of structure. As for the material consumption, the concrete consumption is reduced by 7.7%~12.1% while the reinforcement consumption is increases by 11.02%~26.29% if Code of Design for Seismic Isolated Buildings is adopted. With the increase of total height of structure, the reduction of concrete consumption increases, while the increment in reinforcement consumption decreases. The research outcome will assist in providing a useful reference for seismic design of base-isolated RC frame structures.

Key words: base-isolated RC frame structure, code of design for seismic isolated buildings, code for seismic design of buildings, design comparison, material consumption

中图分类号: 

  • P315.9
[1] 朱宏平, 周方圆, 袁涌. 建筑隔震结构研究进展与分析[J]. 工程力学, 2014, 31(3):1-10. Zhu Hongping, Zhou Fangyuan, Yuan Yong. Development and analysis of the research on base isolated structures[J]. Engineering Mechanics, 2014, 31(3):1-10. (in Chinese)
[2] 刘彦辉, 谭平, 周福霖, 等. 高层框架-剪力墙隔震结构地震响应研究[J]. 工程力学, 2015, 32(3):134-139. Liu Yanhui, Tan Ping, Zhou Fulin, et al. Study of seismic response in isolated high-rise frame-shear wall structures during earthquakes[J]. Engineering Mechanics, 2015, 32(3):134-139. (in Chinese)
[3] 卢嘉茗, 解琳琳, 李爱群, 等. 适用于区域RC框架结构隔震韧性提升的简化模型[J]. 工程力学, 2019. doi:10.6052/j.issn.1000-4750.2019.02.0057. Lu Jiaming, Xie Linlin, Li Aiqun, et al. A simplified model for seismic resilience improvement of regional RC frame structures using seismic isolation[J]. Engineering Mechanics, 2019. doi:10.6052/j.issn.1000-4750.2019.02.0057. (in Chinese)
[4] 范重, 裴雨晨, 赵红, 等. 某剪力墙结构隔震设计技术经济性研究[J]. 建筑结构, 2018, 48(9):1-8. Fan Zhong, Pei Yuchen, Zhao Hong, et al. Study on technical economy of seismic isolation design on a shear wall structure[J]. Building Structure, 2018, 48(9):1-8. (in Chinese)
[5] 党育, 杜永峰, 毕长松. 隔震建筑的经济性分析[J]. 工程抗震与加固改造, 2006, 28(4):37-40. Dang Yu, Du Yongfeng, Bi Changsong. Economy analysis of seismic isolated structures[J]. Earthquake Resistant Engineering and Retrofitting, 2006, 28(4):37-40. (in Chinese)
[6] 缪驰, 周颖, 石维. 9度区商场建筑隔震与非隔震结构方案选择及经济性分析[J]. 结构工程师, 2013, 29(1):62-68. Miao Chi, Zhou Ying, Shi Wei. Structural selection and economic analysis of isolated and non-isolated Shopping mall located at seismic intensity 9[J]. Structural Engineers, 2013, 29(1):62-68. (in Chinese)
[7] Wang Zheng, He Zheng, Shi Yonggan. Fragility and safety margin analysis of RC frames having equal construction cost[C]//Fernando Dilum, Teng Jinguang, Torero Jose L. Proceedings of the Second International Conference on Performance-based and Life-cycle Structural Engineering (PLSE 2015). Brisbane:School of Civil Engineering, The University of Queensland, 2015:1154-1163.
[8] GB 50011-2001, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2001. GB 50011-2001, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2001. (in Chinese)
[9] 卢啸, 陆新征, 李梦珂, 等. 地震作用设计参数调整对框架结构抗震设计及安全性的影响[J]. 工程力学, 2017, 34(4):27-36. Lu Xiao, Lu Xinzheng, Li Mengke, et al. Influence of seismic action adjustments on seismic design[J]. Engineering Mechanics, 2017, 34(4):27-36. (in Chinese)
[10] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[11] 中华人民共和国住房和城乡建设部. 建筑隔震设计规范(征求意见稿)[EB]. http://www.mohurd.gov.cn/zqyj/201801/t20180112_234778.html, 2018-1-11. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code of design for seismic isolated buildings(draft for comment)[EB]. http://www.mohurd.gov.cn/zqyj/201801/t20180112_234778.html, 2018-1-11.
[12] 石诚, 张同亿, 冉田苒, 等. 隔震结构等效线性模型的反应谱法研究[J]. 建筑结构, 2018, 48(17):84-88. Shi Cheng, Zhang Tongyi, Ran Tianran, et al. Study on response spectrum method based on equivalent linear model of isolated structures[J]. Building Structure, 2018, 48(17):84-88. (in Chinese)
[13] 余文正, 陶忠, 潘文, 等. 隔震结构等效线性化计算方法对比研究[J]. 建筑结构学报, 2018, 39(1):78-87. Yu Wenzheng, Tao Zhong, Pan Wen, et al. Comparative study equivalent linearization calculation method in design of seismic isolated structure[J]. Journal of Building Structures, 2018, 39(1):78-87. (in Chinese)
[14] 修明慧, 谭平, 滕晓飞. 隔震结构直接设计法研究[J]. 华南地震, 2017, 37(2):92-99. Xiu Minghui, Tan Ping, Teng Xiaofei. Study on direct design method for isolated structure[J]. South China Journal of Seismology, 2017, 37(2):92-99. (in Chinese)
[15] 滕晓飞, 谭平, 王晓哲,等. 基于性能的隔震结构直接设计方法[J]. 沈阳建筑大学学报(自然科学版), 2018, 34(6):1061-1068. Teng Xiaofei, Tan Ping, Wang Xiaozhe, et al. Performance-based design method of isolated structure[J]. Journal of Shenyang Jianzhu University (Natural Science), 2018, 34(6):1061-1068. (in Chinese)
[16] 党育, 张辙洵, 李涌涛, 等. 基于概率统计方法的隔震结构可靠度[J]. 工程力学, 2018, 35(11):146-154. Dang Yu, Zhang Zhexun, Li Yongtao, et al. Study on aseismic reliability of isolated structures based on probability statistics method[J]. Engineering Mechanics, 2018, 35(11):146-154. (in Chinese)
[17] 李爱群, 刘立德, 曾德民, 等. 高烈度区近断层RC框架核心筒高层结构隔震设计关键参数取值[J]. 东南大学学报(自然科学版), 2018, 48(2):294-302. Li Aiqun, Liu Lide, Zeng Demin, et al. Critical design parameters of seismically isolated RC frame-core tube tall buildings located in near-fault regions[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(2):294-302. (in Chinese)
[18] Li Aiqun, Yang Cantian, Xie Linlin, et al. Research on the rational yield ratio of isolation system and its application to the design of seismically isolated reinforced concrete frame-core tube tall buildings[J]. Applied Sciences, 2017, 7(11):1191.
[19] 杨参天, 解琳琳, 李爱群, 等. 适用于高层隔震结构的地震动强度指标研究[J]. 工程力学, 2018, 35(8):21-29. Yang Cantian, Xie Linlin, Li Aiqun, et al. Intensity measures for seismically isolated tall buildings[J]. Engineering Mechanics, 2018, 35(8):21-29. (in Chinese)
[20] 王维, 包霞, 李爱群. 基于性能的既有框架结构隔震加固设计方法[J]. 建筑科学, 2017, 33(7):99-103. Wang Wei, Bao Xia, Li Aiqun. Performance based isolation retrofitting design of existing frame structures[J]. Building Science, 2017, 33(7):99-103. (in Chinese)
[21] 吴垠龙. 映秀幼儿园基础隔震结构设计[J]. 建筑结构, 2013, 43(增刊1):1233-1236. Wu Yinlong. Yingxiu kindergarten base isolation structure design[J]. Building Structure, 2013, 43(Suppl 1):1233-1236. (in Chinese)
[22] 陈晓彬, 潘文, 兰香, 等. 高烈度区澄江化石地博物馆减隔震结构设计与分析[J]. 建筑结构, 2017, 47(8):41-46. Chen Xiaobin, Pan Wen, Lan Xiang, et al. Design and analysis of seismic isolation and energy-dissipation structure of Chengjiang Fossil Museum in high seismic fortification intensity site[J]. Building Structure, 2017, 47(8):41-46. (in Chinese)
[1] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1-11,24.
[2] 许斌, 李靖. 未知地震激励下结构恢复力及质量非参数化识别[J]. 工程力学, 2019, 36(9): 180-187.
[3] 卢嘉茗, 解琳琳, 李爱群, 曾德民, 杨参天, 刘谦敏. 适用于区域RC框架结构隔震韧性提升的简化模型[J]. 工程力学, 2019, 36(8): 226-234,247.
[4] 李戚齐, 曲哲, 解全才, 王多智. 我国公共建筑中吊顶的震害特征及其易损性分析[J]. 工程力学, 2019, 36(7): 207-215.
[5] 宝鑫, 刘晶波, 王东洋, 王建平, 郭东, 宋可. P波垂直入射下海域岛礁场地动力反应分析[J]. 工程力学, 2019, 36(S1): 1-7.
[6] 孙楚津, 程庆乐, 曾翔, 许镇, 陆新征. 不同地震下的校园建筑震害与经济损失对比[J]. 工程力学, 2019, 36(S1): 111-117,130.
[7] 张天龙, 丁阳, 李忠献. 基于损伤的单层球面网壳结构地震剩余承载力评估与优化分析[J]. 工程力学, 2019, 36(S1): 131-137.
[8] 刘晶波, 王东洋, 谭辉, 宝鑫. 隧道纵向地震反应最不利时刻的确定及其应用[J]. 工程力学, 2019, 36(S1): 240-247.
[9] 胡进军, 李琼林, 邬迪, 谢礼立. 基于PSHA的核电厂近断层抗震设计谱构建方法[J]. 工程力学, 2019, 36(5): 192-199.
[10] 张锐, 李宏男, 王东升, 成虎. 结构时程分析中强震记录选取研究综述[J]. 工程力学, 2019, 36(2): 1-16.
[11] 朱瑞广, 吕大刚. 基于Copula函数的主余震地震动强度参数相关性分析[J]. 工程力学, 2019, 36(2): 114-123.
[12] 贾布裕, 颜全胜, 余晓琳, 杨铮. 考虑行人随机性的人行桥人致横向振动稳定性分析[J]. 工程力学, 2019, 36(1): 155-164.
[13] 王丰, 李宏男. 基于简化IDA的结构地震损伤评估方法[J]. 工程力学, 2018, 35(12): 194-202.
[14] 刘亭亭, 于晓辉, 吕大刚. 地震动多元强度参数主成分与结构损伤的相关性分析[J]. 工程力学, 2018, 35(8): 122-129,137.
[15] 张锐, 成虎, 吴浩, 王东升. 时程分析考虑高阶振型影响的多频段地震波选择方法研究[J]. 工程力学, 2018, 35(6): 162-172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[2] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[3] 戈新生;陈立群;刘延柱. 一类多体系统的非完整运动规划最优控制[J]. 工程力学, 2006, 23(3): 63 -68 .
[4] 罗冠炜;张艳龙;谢建华. 多自由度含间隙振动系统周期运动的二重Hopf分岔[J]. 工程力学, 2006, 23(3): 37 -43,6 .
[5] 李永莉;赵志岗;侯志奎. 卷积型加权残值法求解薄板的动力学问题[J]. 工程力学, 2006, 23(1): 43 -46 .
[6] 杨勇;郭子雄;聂建国;赵鸿铁. 型钢混凝土结构ANSYS数值模拟技术研究[J]. 工程力学, 2006, 23(4): 79 -85,5 .
[7] 朱乐东;王淼;郭震山;丁泉顺. 斜风作用下大跨度斜拉桥双悬臂状态抖振性能[J]. 工程力学, 2006, 23(4): 86 -92 .
[8] 韦立德;杨春和;徐卫亚. 考虑体积塑性应变的岩石损伤本构模型研究[J]. 工程力学, 2006, 23(1): 139 -143 .
[9] 王芳林;高伟;陈建军. 风荷激励下天线结构的随机振动分析[J]. 工程力学, 2006, 23(2): 168 -172 .
[10] 张广清;陈勉. 水平井水压致裂裂缝非平面扩展模型研究[J]. 工程力学, 2006, 23(4): 160 -165 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日