工程力学 ›› 2020, Vol. 37 ›› Issue (2): 168-182.doi: 10.6052/j.issn.1000-4750.2019.01.0135

• 土木工程学科 • 上一篇    下一篇


王萌1, 毕鹏1, 李法雄2   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 交通运输部公路科学研究院, 北京 100088
  • 收稿日期:2019-03-21 修回日期:2019-08-16 出版日期:2020-02-25 发布日期:2020-01-19
  • 通讯作者: 李法雄(1983-),男,浙江温州市人,副研究员,博士,从事组合结构与钢结构研究(E-mail:lifaxiong.br@hotmail.com). E-mail:lifaxiong.br@hotmail.com
  • 作者简介:王萌(1985-),女,黑龙江哈尔滨市人,副教授,博士,从事钢结构抗震研究(E-mail:wangmeng1117@gmail.com);毕鹏(1990-),男,山西省长治市人,硕士生,从事钢结构抗震研究(E-mail:bipengdeyouxiang@163.com).
  • 基金资助:


WANG Meng1, BI Peng1, LI Fa-xiong2   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Research Institute of Highway Ministry of Transport, Beijing 100088, China
  • Received:2019-03-21 Revised:2019-08-16 Online:2020-02-25 Published:2020-01-19

摘要: 采用屈服点低、高延性、高耗能能力的低屈服点钢材制作钢框架节点的连接组件,实现耗散地震能量与震后可更换功能叠加,为震后可恢复功能结构提供一种优质解决方案。为提出带低屈服点钢材“延性保险丝”的钢框架盖板连接节点的设计方法,首先采用通用有限元软件ABAQUS建立非线性计算模型,结合已有钢框架螺栓连接节点拟静力试验,验证数值模型的准确性和适用性。在此基础上,探讨不同影响因子对带低屈服点钢材“延性保险丝”的钢框架盖板连接节点工作性能的影响,获得各个影响因子与盖板“结构保险丝”作用的定量关系,最终提出了带低屈服点钢材“延性保险丝”的钢框架盖板连接节点的设计方法和设计流程,并采用实际工程设计算例进行验证。研究结果表明:拼接缝宽度、腹板盖板厚度与梁宽对节点实际承载力系数和盖板“结构保险丝”作用的影响较小;而拼接位置、梁高和翼缘盖板厚度是影响节点实际承载力系数的关键因子,设计不合理时会令“结构保险丝”作用提早失效;基于计算结果拟合得到节点设计承载力系数临界值与拼接位置和梁高的定量表达式,当设计承载力系数小于临界值时,低屈服点钢材盖板“结构保险丝”作用充分发挥;当设计承载力系数大于临界值时,随着设计承载力系数增大,低屈服点钢材盖板“结构保险丝”作用逐渐减弱。

关键词: 钢框架盖板连接节点, 延性保险丝, 低屈服点钢材, 数值分析, 设计方法

Abstract: Low yield point steel with low yield strength, high ductility and high energy dissipation capacity is used for steel frame joints. It dissipates seismic energy, is replaceable after earthquakes and provides a high-quality solution for structures with resilience requirement. To propose a design for a steel frame connection with low yield point steel "ductile fuses", a nonlinear numerical model was established by using ABAQUS. The model was verified by typical static tests of steel frame joints with bolted connections. The influence of different impact factors on the performance of this kind of joints was explored, and how these impact factors influenced the "structural fuse" was investigated. Subsequently, the design method was proposed and verified by using an example of practical engineering design. The results indicated that the width of the joint gap, the thickness of the web cover plate and the beam width had little influence on the actual bearing capacity coefficient of the joint and the function of "structural" fuse effect. The position of splicing, the height of the beam and the thickness of the flange cover plate were the key factors of the actual bearing capacity coefficient of the joints. The "structural fuse" will be prematurely ineffective if the design is nonviable. The relationship between the critical value of the design bearing capacity coefficient and the position of the joint and the height of the beam was established by data fitting. When the design bearing capacity coefficient is less than the critical value, the "structural fuse" works normally. When the design bearing capacity coefficient is larger than the critical value, the effect of ‘structural fuse’ gradually decreases.

Key words: steel frame cover plate connected joint, ductile fuse, low yield point steel, numerical method, design method


  • TU391
[1] 陈以一, 贺修樟, 柯珂, 等. 可更换损伤元结构的特征与关键技术[J]. 建筑结构学报, 2016, 37(2):1-10. Chen Yiyi, He Xiuzhang, Ke Ke, et al. Characteristics and technical issues on structural systems with replaceable damage-concentrated elements[J]. Journal of Building Structures, 2016, 37(2):1-10. (in Chinese)
[2] 吕西林, 陈聪. 带有可更换构件的结构体系研究进展[J]. 地震工程与工程振动, 2014, 34(1):27-36. Lü Xilin, Chen Cong. Research progress in structural systems with replaceable members[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(1):27-36. (in Chinese)
[3] 吕西林, 周颖, 陈聪. 可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 34(4):130-139. Lü Xilin, Zhou Ying, Chen Cong. Research progress on innovative earthquake-resilient structural systems[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4):130-139. (in Chinese)
[4] Castiglioni C A, Kanyilmaz A, Calado L. Experimental analysis of seismic resistant composite steel frames with dissipative devices[J]. Journal of Constructional Steel Research, 2012, 76:1-12.
[5] Shoeibi S, Kafi M A, Gholhaki M. New performance-based seismic design method for structures with structural fuse system[J]. Engineering structures, 2017, 132:745-760.
[6] Dougka G, Dimakogianni D, Vayas I. Innovative energy dissipation systems (FUSEIS 1-1):Experimental analysis[J]. Journal of Constructional Steel Research, 2014, 96:69-80.
[7] Dimakogianni D, Dougka G, Vayas I, et al. Innovative seismic-resistant steel frames (FUSEIS 1-2):Experimental analysis[J]. Steel Construction, 2012, 5(4):212-221.
[8] 王萌, 钱凤霞, 杨维国. 低屈服点LYP160钢材本构关系研究[J]. 建筑结构学报, 2017, 38(2):55-62. Wang Meng, Qian Fengxia, Yang Weiguo, Study on constitutive behaviors of low yield point steel LYP160[J]. Journal of Building Structures, 2017, 38(2):55-62. (in Chinese)
[9] 王萌, 钱凤霞, 杨维国等. 低屈服点钢材与Q345B和Q460D钢材本构关系对比研究[J]. 工程力学, 2017, 34(2):60-68. Wang Meng, Qian Fengxia, Yang Weiguo, et al. Comparison study on constitutive relationship of low yield point steels, Q345b steel and Q460d steel[J]. Engineering Mechanics, 2017, 34(2):60-68. (in Chinese)
[10] 王萌, 毕鹏, 吴照章. 带低屈服点钢材"延性保险丝" 的钢框架连接节点受力行为研究[J].建筑结构学报. 2019, 40(11):131-142. Wang Meng, Bi Peng, Wu Zhaozhang. Study on behavior of steel frame connection with low yield point steel “ductile fuse”[J]. Journal of Building Structures. 2019, 40(11):131-142. (in Chinese)
[11] 邵铁峰, 陈以一. 采用耗能角钢连接的组件可更换梁试验研究[J]. 建筑结构学报, 2016, 37(7):38-45. Shao Tiefeng, Chen Yiyi. Experimental study on steel h-beams with replaceable energy dissipation angle[J]. Journal of Building Structures, 2016, 37(7):38-45. (in Chinese)
[12] 马人乐, 杨阳, 陈桥生等. 长圆孔变型性高强螺栓节点抗震性能试验研究[J]. 建筑结构学报, 2009, 30(1):101-106. Ma Renle, Yang Yang, Chen Qiaosheng, et al. Seismic performance testing study on high strength bolt connections with slotted holes[J]. Journal of Building Structures, 2009, 30(1):101-106. (in Chinese)
[13] Eurocode 8, Design of structures for earthquake resistance, Part 1:General rules, seismic actions and rules for buildings, EN1998-1[S]. Brussels:European Committee for Standardization, 2004.
[14] FEMA-350, Recommended seismic design criteria for new steel momentframe buildings[S]. Washington, DC:Federal Emergency Management Agency, 2000.
[15] GB/T 11263-2017, 热轧H型钢和部分T型钢[S]. 北京:中国标准出版社, 2017. GB/T 11263-2017, Inspection and Quarantine of The People's Republic of China. Hot rolled H and cut T section steel[S]. Beijing:Standards Press of China, 2017. (in Chinese)
[16] GB 50017-2017, 钢结构设计标准[S]. 北京:中国计划出版社, 2017. GB 50017-2017, Code for design of steel structure[S]. Beijing:China Planning Press, 2017. (in Chinese)
[17] GB/T 1228-2006, 钢结构用高强度大六角头螺栓[S]. 北京:中国标准出版社, 2006. GB/T 1228-2006, High strength bolts with large hexagon head for steel structures[S]. Beijing:Standards Press of China, 2006. (in Chinese)
[18] JGJ 82-2011, 钢结构高强度螺栓连接技术规程[S]. 北京:中国建筑工业出版社, 2011. JGJ 82-2011, Technical specification for high strength bolt connections of steel structures[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
[19] 石永久, 王萌, 王元清. 循环何在作用下结构钢材本构关系试验研究[J]. 建筑材料学报, 2012, 15(3):293-300. Shi Yongjiu, Wang Meng, Wang Yuanqing. Experimental study of structural steel constitutive relationship under cyclic loading[J]. Journal of Building Material, 2012, 15(3):293-300. (in Chinese)
[20] Manual of steel construction:load & resistance factor design[M]. 3rd ed. Chicago:American Institute of Steel Construction, 2003:(6-70)-(6-97).
[21] Astaneh-Asl A. Seismic design of steel columntree moment-resisting frames[D]. California:Berkeley, 1997:15-26.
[22] 李星荣, 魏才昂, 秦斌. 钢结构连接节点设计手册:第三版[M]. 北京:中国建筑工业出版社, 2014, 30-38. Li Xingrong, Wei Caiang, Qin Bin. Steel structure connection design manual:third edition[M]. Beijing:China Architecture & Building Press, 2014, 30-38. (in Chinese)
[1] 于金光, 刘利明, 郝际平. 部分组合框架-钢板剪力墙边框柱设计方法研究[J]. 工程力学, 2020, 37(2): 98-110.
[2] 赵志鹏, 张瑞甫, 陈清军, 潘超, 王超. 基于减震比设计方法的惯容减震结构分析[J]. 工程力学, 2019, 36(S1): 125-130.
[3] 王萌, 柯小刚. 带LYP160钢连接组件的扩翼型盖板连接节点抗震行为研究[J]. 工程力学, 2019, 36(8): 149-160.
[4] 王宇航, 刘元九, 周绪红. 腹板屈曲约束钢连梁抗震性能研究[J]. 工程力学, 2019, 36(6): 49-59,69.
[5] 杨俊芬, 程锦鹏, 翟伟, 张文喆. 内填脱硫石膏砌块墙体的新型装配式钢框架抗震性能研究[J]. 工程力学, 2019, 36(6): 147-156.
[6] 孙振宇, 张顶立, 房倩. 隧道锚固系统的协同作用及设计方法[J]. 工程力学, 2019, 36(5): 53-66,75.
[7] 陈仁朋, 鲁立, 张阳, 吴怀娜. 盾构管片UHPC加固技术及力学性能分析[J]. 工程力学, 2019, 36(11): 41-49.
[8] 郭影, 姜忻良, 曹东波, 白铁钧, 朱广轶, 冯春. 一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法[J]. 工程力学, 2018, 35(7): 139-149.
[9] 徐志峰, 陈忠范, 朱松松, 刘吉, 殷之祺. 秸秆板轻钢高强泡沫混凝土剪力墙轴心受压性能研究[J]. 工程力学, 2018, 35(7): 219-231.
[10] 王玉银, 王庆贺, 耿悦. 建筑结构用再生混凝土水平受力构件研究进展[J]. 工程力学, 2018, 35(4): 1-15.
[11] 王勇, 段亚昆, 张亚军, 袁广林, 王腾焱, 吕俊利. 单向面内约束混凝土双向板抗火性能试验研究及数值分析[J]. 工程力学, 2018, 35(3): 65-78.
[12] 张家广, 吴斌, 赵俊贤. 防屈曲支撑加固钢筋混凝土框架的实用设计方法[J]. 工程力学, 2018, 35(3): 151-158.
[13] 王萌, 柯小刚, 吴照章. 可更换延性耗能连接组件的钢框架节点抗震性能研究[J]. 工程力学, 2018, 35(12): 151-163.
[14] 狄少丞, 王庆, 薛彦卓, 李佳霖. 破冰船冰区操纵性能离散元分析[J]. 工程力学, 2018, 35(11): 249-256.
[15] 徐龙河, 肖水晶, 卢啸. 内置碟簧自复位联肢剪力墙参数设计与滞回性能研究[J]. 工程力学, 2018, 35(10): 144-151,161.
Full text



No Suggested Reading articles found!