工程力学 ›› 2020, Vol. 37 ›› Issue (2): 145-158.doi: 10.6052/j.issn.1000-4750.2019.01.0127

• 土木工程学科 • 上一篇    下一篇

带可更换剪切型耗能梁段高强钢组合框筒的结构影响系数研究

程倩倩1, 苏明周1,2, 连鸣1,2   

  1. 1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055;
    2. 西安建筑科技大学结构工程与抗震教育部重点实验室, 陕西, 西安 710055
  • 收稿日期:2019-03-22 修回日期:2019-08-13 出版日期:2020-02-25 发布日期:2020-01-19
  • 通讯作者: 连鸣(1987-),男,山东人,副教授,博士,硕导,主要从事新型钢结构体系抗震性能与设计理论研究(E-mail:lianming0821@163.com). E-mail:lianming0821@163.com
  • 作者简介:程倩倩(1994-),女,山西人,博士生,主要从事新型钢结构体系抗震性能与设计方法研究(E-mail:chengqianqian0599@163.com);苏明周(1971-),男,河南人,教授,博士,博导,主要从事钢结构稳定与抗震、新型结构体系受力性能和设计理论研究(E-mail:sumingzhou@163.com).
  • 基金资助:
    国家自然科学基金项目(51708444);陕西省自然科学基础研究计划项目(2018JQ5074);陕西省教育厅专项科研计划项目(18JK0456);陕西省高校科协青年人才托举计划项目(20170517);陕西省博士后科研项目(2017)

RESPONSE MODIFICATION FACTOR OF HIGH STRENGTH STEEL FABRICATED FRAMED-TUBE WITH REPLACEABLE SHEAR LINKS

CHENG Qian-qian1, SU Ming-zhou1,2, LIAN Ming1,2   

  1. 1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China;
    2. Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education(XAUAT), Xi'an, Shaanxi 710055, China
  • Received:2019-03-22 Revised:2019-08-13 Online:2020-02-25 Published:2020-01-19

摘要: 针对传统钢框筒结构耗能能力差和震后修复困难的问题,提出了一种新型钢框筒结构体系-带可更换剪切型耗能梁段的高强钢组合框筒结构(HSS-SFT)。为研究HSS-SFT的结构影响系数,设计了8个具有理想屈服模式的HSS-SFT结构。考虑高阶振型的影响,采用分步侧向力调整法得到结构的性能曲线,基于改进的能力谱法分析了楼层总数和耗能梁段长度对结构影响系数R和位移放大系数Cd的影响。研究结果表明: HSS-SFT在弹塑性阶段,由于内力重分布,结构呈现出较高的超强能力和延性能力;随着结构层数的增加,R呈减小趋势,Cd无显著变化规律,随着耗能梁段长度的增加,RCd略微增大;建议HSS-SFT设计地震作用下的R为3.65,结构超强系数RΩ为2.92,罕遇地震作用下的Cd为7.45,设计基底剪力可比现行抗震规范规定的小震基底剪力降低30%;HSS-SFT可以保证结构在罕遇地震作用下呈现理想的破坏模式,有效地改善传统钢框筒结构耗能能力差和震后修复困难的问题。

关键词: 钢框筒, 剪切型耗能梁段, 分步侧向力调整法, 改进的能力谱法, 结构影响系数, 位移放大系数

Abstract: High strength steel fabricated framed-tube structure with replaceable shear links (HSS-SFT) was proposed to improve the poor energy dissipation capacity and replicability after earthquakes. To investigate the response modification factor of HSS-SFTs, eight HSS-SFTs with ideal yield mechanism were established. The capacity curves of HSS-SFTs were obtained by stepwise lateral force adjustment method considering the effects of high-order vibration mode. The response modification factor R and displacement amplification factor Cd were obtained based on the improved capability spectrum method. Subsequently, the effects of parameters influencing R and Cd, including the building total story number and the shear link length, were investigated. According to the analysis results, HSS-SFTs have great overstrength and good ductility due to internal force redistribution of inelastic state. The R decreased, and Cd had no significant change as the total story number increased. The R and Cd slightly increased by an increase in the shear link length. Based on the analysis results, the R, RΩ and the Cd equalled 3.65, 2.92 and 7.45 respectively and 30% elastic design earthquake action of HSS-SFTs can be approximately reduced though national seismic code. HSS-SFTs can characterize an ideal failure mode during rare earthquakes and effectively improve the poor energy dissipation and post-earthquakes repairable abilities of traditional steel frame-tube structure.

Key words: steel frame-tube, shear link, stepwise lateral force adjustment method, improved capability spectrum method, response modification factor, displacement amplification factor

中图分类号: 

  • TU393.2
[1] 吕西林, 全柳萌, 蒋欢军. 从16届世界地震工程大会看可恢复功能抗震结构研究趋势[J]. 地震工程与工程振动, 2017, 1(3):1-9. Lü Xilin, Quan Liumeng, Jiang Huanjun. Research trend of earthquake resilient structures seen from 16WCEE[J].Earthquake Engineering and Engineering Dynamics, 2017, 1(3):1-9. (in Chinese)
[2] 周颖, 吴浩, 顾安琪. 地震工程:从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6):1-12. Zhou Ying, Wu Hao, Gu Anqi. Earthquake engineering:from earthquake resistance, energy dissipation and isolation to resilience[J]. Engineering Mechanics, 2019, 36(6):1-12. (in Chinese)
[3] 吕西林, 武大洋, 周颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报, 2019, 40(2):1-15. Lü Xilin, Wu Dayang, Zhou Ying. State-of-the-art of earthquake resilient structure[J]. Journal of Building Structures, 2019, 40(2):1-15. (in Chinese)
[4] Cimellaro G P, Renschler C, Reinhorn A M, et al. Peoples:A framework for evaluating resilience[J]. Journal of Structural Engineering, 2016, 142(10):04016063.
[5] Mansour N, Christopoulos C, Tremblay R. Experimental validation of replaceable shear links for eccentrically braced steel frames[J]. Journal of Structural Engineering, 2011, 137(10):1141-1152.
[6] 田小红, 苏明周, 连鸣, 等. 高强钢组合K形偏心支撑钢框架抗震性能分析[J]. 工程力学, 2019, 36(3):182-191. Tian Xiaohong, Su Mingzhou, Lian Ming, et al. Analysis of seismic performance of high strength steel composite K-eccentrically braced frames[J]. Engineering Mechanics, 2019, 36(3):182-191. (in Chinese)
[7] Ji X D, Wang Y D, Ma Q F, et al. Cyclic behavior of replaceable steel coupling beams[J]. Journal of Structural Engineering, 2016, 104(3):1-8.
[8] 纪晓东, 钱稼茹. 震后功能可快速恢复联肢剪力墙研究[J]. 工程力学, 2015, 32(10):1-8. Ji Xiaodong, Qian Jiaru. Study of earthquake resilient coupled shear walls[J]. Engineering Mechanics, 2015, 32(10):1-8. (in Chinese)
[9] Nikoukalam M T, Dolatshahi K M. Development of structural shear fuse in moment resisting frames[J]. Journal of Constructional Steel Research, 2015, 114:349-361.
[10] 范重, 王海波, 裴雨晨, 等. 可更换连梁对框架-核心筒结构损伤影响研究[J]. 建筑结构学报, 2017, 38(增刊1):25-33. Fan Zhong, Wang Haibo, Pei Yuchen, et al. Effect of replaceable coupling beams on damage of frame-core structures[J]. Journal of Building Structures, 2017, 38(Suppl 1):25-33. (in Chinese)
[11] 吕西林, 陈聪. 设置可更换连梁的双筒体混凝土结构振动台试验研究[J]. 建筑结构学报, 2017, 38(8):45-54. Lü Xilin, Chen Cong. Shaking table tests of double tube concrete structure with replaceable coupling beams[J]. Journal of Building Structures, 2017, 38(8):45-54. (in Chinese)
[12] 雷淑忠,沈祖炎,刘振华. 超高层钢框筒结构体系截面尺寸的初步确定[J]. 建筑结构, 2005, 35(6):20-22. Lei Shuzhong, Shen Zuyan, Liu Zhenhua. Determination of section dimension for super-rise steel frame-tube structure in the preliminary design stage[J]. Building Structure, 2005, 35(6):20-22. (in Chinese)
[13] Hassan K H, Company M. Exact method of analysis of shear lag in framed tube structures[J]. Structural Design of Tall & Special Buildings, 2002, 11(5):375-388.
[14] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture Industry Press, 2010. (in Chinese)
[15] GB 50017-2017, 钢结构设计标准[S]. 北京:中国建筑工业出版社, 2017. GB 50017-2017, Standard for design of steel structures[S]. Beijing:China Architecture Industry Press, 2017. (in Chinese)
[16] 连鸣, 苏明周, 李慎. Y形高强钢组合偏心支撑框架结构基于性能的塑性设计方法研究[J]. 工程力学, 2017, 34(5):148-162. Lian Ming, Su Mingzhou, Li Shen. Performance-based plastic design method for Y-type high strength steel composite eccentrically braced frames[J]. Engineering Mechanics, 2017, 34(5):148-162. (in Chinese)
[17] 施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30(1):1-13. Shi Gang, Ban Huiyong, Shi Yongjiu, et al. Overview of research progress for high strength steel structures[J]. Engineering Mechanics, 2013, 30(1):1-13. (in Chinese)
[18] 童根树, 赵永峰. 中日欧美抗震规范结构影响系数的构成及其对塑性变形需求的影响[J]. 建筑钢结构进展, 2008, 10(5):53-62. Tong Genshu, Zhao Yongfeng. Composition of structural behavior factors in codes of China, Japan, Europe and USA for earthquake resistance and their corresponding ductility demands[J]. Progress in Steel Building Structures, 2008, 10(5):53-62. (in Chinese)
[19] ATC-34, A critical review of current approaches to earthquake resistant design[S]. Applied Technology Council, Redwood City, California. California:Applied Technology Council, 1995:31-36.
[20] FEMA P695, Quantification of building seismic perform-ance factors[S]. Washington, D.C.:Federal Emergency Management Agency, 2009.
[21] Reyes-Salazar A, Bojórquez E, Velazquez-Dimas J I, et al. Ductility reduction factors for steel buildings considering different structural representations[J]. Bulletin of Earthquake Engineering, 2015, 13(6):1749-1771.
[22] 苏明周, 李亚兰. 基于IDA方法的高强钢组合Y型偏心支撑框架的结构影响系数研究[J]. 西安建筑科技大学学报(自然科学版), 2014, 46(5):635-642. Su Mingzhou, Li Yalan. Study on structural behavior factor of high strength steel composite Y-type eccentrically braced frame based on incremental dynamic analysis[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2014, 46(5):635-642. (in Chinese)
[23] 杨文侠, 顾强, 宋振森, 等. Y形偏心支撑钢框架的地震反应折减系数和超强系数[J]. 工程力学, 2012, 29(10):129-136. Yang Wenxia, Gu Qiang, Song Zhensen, et al. Response modification factor R and overstrength factor Ω of Y-eccentric braced steel frame[J]. Engineering Mechanics, 2012, 29(10):129-136. (in Chinese)
[24] 杨俊芬, 顾强, 何涛, 等. 用增量动力分析方法求解人字形中心支撑钢框架的结构影响系数和位移放大系数(I)-方法[J]. 地震工程与工程振动, 2010, 30(2):64-71. Yang Junfen, Gu Qiang, He Tao, et al. Response modification factor and displacement amplification factor for inverted V-CBSFs based on IDA (I)-Method[J]. Earthquake Engineering and Engineering Dynamics, 2010, 30(2):64-71. (in Chinese)
[25] Asgarian B, Shokrgozar H R. BRBF response modifica-tion factor[J]. Journal of Constructional Steel Research, 2009, 65(2):290-298.
[26] 孙涛, 马克俭, 陈志华, 等. 多层石膏墙体钢网格式框架结构影响系数研究[J]. 建筑结构学报, 2013, 34(9):66-72. Sun Tao, Ma Kejian, Chen Zhihua, et al. Study on structural influencing coefficient of multistory steel grid frame with gypsum-wall[J]. Journal of Building Structures, 2013, 34(9):66-72. (in Chinese)
[27] Kurban C O, Topkaya C. A numerical study on response modification, overstrength and displacement amplification factors for steel plate shear wall systems[J]. Earthquake Engineering & Structural Dynamics, 2010, 38(4):497-516.
[28] Lian M, Zhang H, Cheng Q Q, et al. Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links[J]. Steel and Composite Structures, 2019, 30(4):365-382.
[29] 张浩, 连鸣, 苏明周, 等. 含可更换剪切型耗能梁段- 高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(增刊1):78-85. Zhang Hao, Lian Ming, Su Mingzhou, et al. Static elastoplastic analysis of high strength steel fabricated framed-tube structures with shear links[J]. Engineering Mechanics, 2019, 36(Suppl 1):78-85. (in Chinese)
[30] Uang C M. Establishing R(or Rw) and Cd factors for building seismic provisions[J]. Journal of Structural Engineering, 1991, 117(1):19-28.
[31] Fanaie N, Shamlou S O. Response modification factor of mixed structures[J]. Steel and Composite Structures, 2015, 19(6):1449-1466.
[32] Vidic T, Fajfar P, Fischinger M. Consistent inelastic design spectra:strength and displacement[J]. Earthquake Engineering & Structural Dynamics, 1994, 23(5):507-521.
[33] FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings[S]. Washington, D.C.:Federal Emergency Management Agency, 2000.
[34] Tong G S, Huang J Q. Seismic force modification factor for ductile structures[J]. Journal of Zhejiang University, 2005, 6(8):813-825.
[35] Park R. Ductility evaluation from laboratory and analytical testing[C]//Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, 1988, 8:605-616.
[1] 张浩, 连鸣, 苏明周, 程倩倩, 关彬林. 含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(S1): 78-85.
[2] 朱丽华, 王健, 于安琪, 单诗宇. 基于建筑需求的新型黏滞阻尼器开敞式布置机构研究[J]. 工程力学, 2019, 36(8): 210-216,225.
[3] 补国斌, 周靖, 王菁菁. 速度脉冲地震和结构偏心耦合效应对结构影响系数的修正[J]. 工程力学, 2019, 36(8): 217-225.
[4] 赵永峰;童根树. 剪切滑移滞回模型的结构影响系数[J]. 工程力学, 2009, 26(4): 73-081.
[5] 赵永峰;童根树. 双折线弹塑性滞回模型的结构影响系数[J]. 工程力学, 2008, 25(1): 0-070.
[6] 史爱明;杨永年;王刚. 弹性机翼跨音速静气动弹性问题研究[J]. 工程力学, 2006, 23(5): 173-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日