工程力学 ›› 2020, Vol. 37 ›› Issue (2): 124-133.doi: 10.6052/j.issn.1000-4750.2019.01.0116

• 土木工程学科 • 上一篇    下一篇

考虑主余震序列影响的低延性钢筋混凝土框架易损性分析

韩建平1,2, 李军1,2   

  1. 1. 兰州理工大学甘肃省土木工程防灾减灾重点实验室, 甘肃, 兰州 730050;
    2. 兰州理工大学防震减灾研究所, 甘肃, 兰州 730050
  • 收稿日期:2019-03-14 修回日期:2019-07-20 出版日期:2020-02-25 发布日期:2020-01-19
  • 通讯作者: 韩建平(1970-),男,甘肃宕昌人,教授,博士,博导,主要从事结构抗震与减震控制、结构健康监测与损伤诊断研究(E-mail:jphan@lut.edu.cn). E-mail:jphan@lut.edu.cn
  • 作者简介:李军(1994-),男,甘肃渭源人,硕士生,主要从事工程结构抗震研究(E-mail:lijun199401@163.com).
  • 基金资助:
    国家自然科学基金项目(51578273);教育部长江学者和创新团队发展计划(IRT_17R51)

SEISMIC FRAGILITY ANALYSIS OF LOW-DUCTILE RC FRAME ACCOUNTING FOR THE INFLUENCE OF MAINSHOCK-AFTERSHOCK SEQUENCES

HAN Jian-ping1,2, LI Jun1,2   

  1. 1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China;
    2. Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2019-03-14 Revised:2019-07-20 Online:2020-02-25 Published:2020-01-19

摘要: 主余震序列作用下余震对主震已受损结构会造成附加损伤,甚至引起倒塌,特别是对低延性结构。目前对低延性结构在主余震作用下抗震性能的分析与评估研究还不充分。根据低延性钢筋混凝土框架的破坏特点,考虑其梁柱节点的剪切破坏、柱的弯剪破坏以及强度、刚度退化行为和梁端纵向钢筋粘结滑移破坏,利用OpenSees有限元软件建立了一6层3跨低延性钢筋混凝土框架结构的精细分析模型。选取真实记录的主余震序列和基于重复法构造的主余震序列,并考虑余震方向性、余震次数的影响。以不同的主余震序列作为输入,对低延性钢筋混凝土框架结构模型进行动力分析,获得不同损伤状态对应的地震易损性曲线,进而分析不同主余震序列作用对其抗震性能的影响。分析结果表明,该文提出的低延性结构精细分析模型能很好地模拟低延性结构梁柱节点由剪切作用引起的刚度和强度退化现象。相对于仅有主震作用,主余震序列作用下低延性钢筋混凝土框架结构对应损伤状态的超越概率提高,且随着结构损伤程度的加剧,提高越明显。基于重复法构造的主余震序列作用下对应损伤状态的超越概率高于真实记录的主余震序列作用下的超越概率。不同的余震作用方向,对相应损伤状态的超越概率有一定的影响。增加余震作用的次数,也会增加相应损伤状态的超越概率。

关键词: 主余震序列, 低延性钢筋混凝土框架, 地震易损性分析, 数值模拟, 抗震性能评估

Abstract: Under the action of mainshock-aftershock sequences, the aftershock can cause additional damage to a damaged structure by the mainshock, or even cause it to collapse, especially for a low ductility structure. Currently, the analysis and evaluation of aseismic performance of low-ductile structures under the mainshock-aftershock sequences are not sufficient. According to the failure characteristics of a low-ductile reinforced concrete (RC) frame, the shear failure of beam-column joints, the flexure-shear failure of column, the strength and stiffness degradation, and the bond-slip failure of longitudinal reinforcement at the end of beam were taken into consideration for the numerical simulation of a low-ductile RC frame. The refined analytical model of a 6-story 3-span low-ductile RC frame structure was established via OpenSees finite element software. The real mainshock-aftershock sequences and the mainshock-aftershock sequences based on repeated method were selected. The effects of aftershock directionality and the number of aftershocks were also considered. Taking different mainshock-aftershock sequences as input, the dynamic analysis of the low-ductile RC frame model was carried out and the seismic fragility curves corresponding to different damage states were obtained. Then the effect of different mainshock-aftershock sequences on its aseismic performance was analyzed. The results show that the refined analytical model of a low-ductile RC frame presented can simulate the degradation of stiffness and strength of beam-column joints due to shearing actions. Comparing with the mainshock input only, the exceedance probability of the damage state of the low-ductile RC frame under the influence of the mainshock-aftershock sequences is higher, and with the increase of the damage extent under the mainshock, the increase is much more obvious. The exceedance probability of the corresponding damage state under the influence of the mainshock-aftershock sequences based on the repeated method is higher than that under the influence of the real mainshock-aftershock sequences. The different direction of aftershock has certain influence on the exceedance probability of corresponding damage states. Increasing the number of aftershocks will also increase the exceedance probability of corresponding damage states.

Key words: mainshock-aftershock sequence, low-ductile reinforced concrete frame, seismic fragility analysis, numerical simulation, seismic performance evaluation

中图分类号: 

  • TU375.4
[1] Gaetani d'Aragona M, Polese M, Elwood K J, et al. Aftershock collapse fragility curves for non-ductile RC buildings:A scenario-based assessment[J]. Earthq-uake Engineering & Structural Dynamics, 2017, 46(13), 2083-2102.
[2] Wu C L, Kuo W W, Yang Y S, et al. Collapse of a non-ductile concrete frame:Shaking table tests[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(2):205-224.
[3] Elwood K J. Modelling failures in existing reinforced concrete columns[J]. Canadian Journal of Civil Engineering, 2004, 31(5):846-859.
[4] Shoraka M B, Elwood K J. Mechanical model for non-ductile reinforced concrete columns[J]. Journal of Earthquake Engineering, 2013, 17(7):937-957.
[5] Ghannoum W M, Moehle J P. Rotation-based shear failure model for lightly confined RC columns[J]. Journal of Structural Engineering, ASCE, 2012, 138(10):1267-1278.
[6] Lowes L N, Altoontash A. Modeling reinforced-con-crete beam-column joints subjected to cyclic loading[J]. Journal of Structural Engineering, ASCE, 2003, 129(12):1686-1697.
[7] Mitra N, Lowes L N. Evaluation, calibration, and verification of a reinforced concrete beam-column joint model[J]. Journal of Structural Engineering, ASCE, 2007, 133(1):105-120.
[8] Yavari S, Elwood K J, Lin S H, et al. Experimental study on dynamic behavior of multi-story reinforced concrete frames with non-seismic detailing[C]//Goodno B. Improving the Seismic Performance of Existing Buildings and Other Structures. San Francisco, California:American Society of Civil Engineers, 2009:489-499.
[9] 周洲, 于晓辉, 吕大刚. 主余震序列作用下钢筋混凝土框架结构的易损性分析及安全评估[J]. 工程力学, 2018, 35(11):134-145. Zhou Zhou, Yu Xiaohui, Lü Dagang. Fragility analysis and safety evaluation of reinforced concrete frame structures subjected to mainshock-aftershock earthquake sequences[J]. Engineering Mechanics, 2018, 35(11):134-145. (in Chinese)
[10] 于晓辉, 吕大刚, 肖寒. 主余震序列型地震动的增量损伤谱研究[J]. 工程力学, 2017, 34(3):47-53. Yu Xiaohui, Lü Dagang, Xiao Han. Incremental damage spectra of mainshock-aftershock sequence-type ground motions[J]. Engineering Mechanics, 2017, 34(3):47-53. (in Chinese)
[11] 于晓辉, 乔雨蒙, 代旷宇, 等. 主余震序列作用下非线性单自由度体系的增量损伤分析[J]. 工程力学, 2019, 36(3):121-129. Yu Xiaohui, Qiao Yumeng, Dai Kuangyu, et al. Incremental damage analysis of nonlinear single-degree-freedom systems subjected to mainshock-aftershock earthquake sequences[J]. Engineering Mechanics, 2019, 36(3):121-129. (in Chinese)
[12] 张沛洲, 康谨之, 欧进萍. 主余震序列作用下钢混框架结构损伤与抗震性能分析[J]. 地震工程与工程振动, 2014, 34(3):1-8. Zhang Peizhou, Kang Jinzhi, Ou Jinping. Damage and seismic performance analysis of RC frame structures under mainshock-aftershock earthquake sequences[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(3):1-8. (in Chinese)
[13] 宋孟超. 钢筋混凝士梁柱节点核心区模型化方法研究[D]. 重庆:重庆大学, 2009. Song Mengchao. Study on modeling method of reinforced concrete beam-column joint core[D]. Chongqing:Chongqing University, 2009. (in Chinese)
[14] Jeon J S, Lowes L N, Desroches R, et al. Fragility curves for non-ductile reinforced concrete frames that exhibit different component response mechanisms[J]. Engineering Structures, 2015, 85:127-143.
[15] Mckenna F. OpenSees:A framework for earthquake engineering simulation[J]. Computing in Science and Engineering, 2011, 13(4):58-66.
[16] Paspuleti C. Seismic analysis of an older reinforced concrete frame structure[D]. Washington:University of Washington, 2002.
[17] Zhao J, Sritharan S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. ACI Structural Journal, 2007, 104(2):133-141.
[18] Li B, Wu Y, Pan T C. Seismic behavior of nonseismically detailed interior beam-wide column joints-Part I:Experimental results and observed behavior[J]. ACI Structural Journal, 2002, 99(9):791-802.
[19] Li B, Tran C T N, Pan T C. Experimental and numerical investigations on the seismic behavior of lightly reinforced concrete beam-column joints[J]. Journal of Structural Engineering, ASCE, 2009, 135(9):1007-1018.
[20] Goda K, Taylor C A. Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(15):2311-2330.
[21] Hatzigeorgiou G D, Beskos D E. Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes[J]. Engineering Structures, 2009, 31(11):2744-2755.
[22] Ellingwood B R, Celik O C, Kinali K. Fragility assessment of building structural systems in Mid-America[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13):1935-1952.
[23] Yu X, Lu D, Li B. Estimating uncertainty in limit state capacities for reinforced concrete frame structures through pushover analysis[J]. Earthquakes & Structures, 2016, 10(1):141-161.
[1] 郑山锁, 荣先亮, 张艺欣, 董立国. 冻融损伤低矮RC剪力墙数值模拟方法[J]. 工程力学, 2020, 37(2): 70-80.
[2] 孙瑛, 武涛, 武岳. 带抗风夹的直立锁边屋面系统抗风性能的参数研究[J]. 工程力学, 2020, 37(2): 183-191.
[3] 蒋亦庞, 苏亮, 黄鑫. 考虑参数不确定性的无筋砌体结构地震易损性分析[J]. 工程力学, 2020, 37(1): 159-167.
[4] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[5] 陈恒, 肖映雄, 郭瑞奇. 基于p型自适应有限元法的混凝土骨料模型数值模拟[J]. 工程力学, 2019, 36(S1): 158-164.
[6] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[7] 王钰, 纪巧玲, 刘庆凯. 规则波作用下导桩锚泊的浮防波堤水动力特性的数值模拟[J]. 工程力学, 2019, 36(S1): 268-271,284.
[8] 徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59.
[9] 宋二祥, 仝睿, 罗爽, 李鹏. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学, 2019, 36(8): 30-39.
[10] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[11] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[12] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[13] 于晓辉, 乔雨蒙, 代旷宇, 陶静, 吕大刚. 主余震序列作用下非线性单自由度体系的增量损伤分析[J]. 工程力学, 2019, 36(3): 121-130.
[14] 钟紫蓝, 王书锐, 杜修力, 李立云, 侯本伟. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224-230,239.
[15] 冯程远, 李国强, 蒋彬辉. 钢材高温材性模型对火灾下钢框架结构倒塌模拟的影响研究[J]. 工程力学, 2019, 36(12): 24-36,78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日