工程力学 ›› 2020, Vol. 37 ›› Issue (2): 98-110.doi: 10.6052/j.issn.1000-4750.2019.01.0110

• 土木工程学科 • 上一篇    下一篇

部分组合框架-钢板剪力墙边框柱设计方法研究

于金光1,2, 刘利明1, 郝际平1,2   

  1. 1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055;
    2. 西安建筑科技大学国家级土木工程虚拟仿真实验教学中心, 陕西, 西安 710055
  • 收稿日期:2019-03-12 修回日期:2019-07-09 出版日期:2020-02-25 发布日期:2020-01-19
  • 通讯作者: 于金光(1985-),男,黑龙江人,副教授,博士,从事钢结构及组合结构研究(E-mail:yjggordon@163.com). E-mail:yjggordon@163.com
  • 作者简介:刘利明(1992-),男,甘肃人,硕士生,从事钢结构及组合结构研究(E-mail:2049893594@qq.com);郝际平(1959-),男,陕西人,教授,博士,博导,从事钢结构工程及教学研究(E-mail:haojiping@xauat.edu.cn).
  • 基金资助:
    国家重点研发计划资助项目(2016YFC0701201);国家自然科学基金资助项目(51578442,51408461);陕西省教育厅专项科研项目(17JK0438);陕西省自然科学基础研究计划资助项目(2017JQ5064)

STUDY ON DESIGN METHOD OF VERTICAL BOUNDARY ELEMENT OF PARTIALLY ENCASED COMPOSITE FRAME-STEEL PLATE SHEAR WALLS

YU Jin-guang1,2, LIU Li-ming1, HAO Ji-ping1,2   

  1. 1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China;
    2. National Experimental Teaching Center for Civil Engineering Virtual Simulation, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
  • Received:2019-03-12 Revised:2019-07-09 Online:2020-02-25 Published:2020-01-19

摘要: 该文通过对部分组合框架—薄钢板剪力墙结构的试验,发现其内嵌钢板破坏顺序为初始对角屈服、统一屈服和应变硬化三个阶段。引入部分组合柱后,有效改善了传统钢柱的弯扭失稳破坏模式,部分组合框架柱破坏模式为柱顶和柱底形成塑性铰的强度破坏。基于“强框架、弱墙板”的设计理念,该文根据叠加原理确定了统一屈服阶段和应变硬化阶段部分组合柱内力计算原则,提出了适用于部分组合框架-薄钢板剪力墙框架柱的设计方法。通过有限元验证表明:该设计方法能够有效地预测底层受压柱的破坏模式及其塑性铰出现的位置,能够为合理的钢板墙边框柱设计提供理论依据。

关键词: 钢板剪力墙, 部分组合框架, 设计方法, 试验研究, 有限元模拟

Abstract: Based on the experimental study of the partially encased composite frame-thin steel plate shear walls, it is found that the failure stages of the infilled steel plate include initial diagonal yielding, uniformed yielding, and strain hardening. By introducing the partially encased composite column, the bending-torsion failure modes of traditional steel columns are effectively improved. The failure mode of the partially encased composite column is the strength failure of plastic hinges formed at the top and bottom of the column. Based on the design concept of "strong frame and weak wall panel", it determines the calculation principle of the internal force of the partially encased composite column in the uniformed yielding stage and the strain hardening stage according to the superposition principle, and proposes a design method suitable for frame column of the partially encased composite frame-thin steel plate shear walls. The finite element simulation shows that the design method can effectively predict the failure modes and the locations of the plastic hinges of the bottom compressed column, which can provide theoretical basis for reasonable design of boundary frame column in steel plate shear walls.

Key words: steel plate shear walls, partially encased composite frame, design method, experimental study, finite element simulation

中图分类号: 

  • TU398.2
[1] Wang Meng, Yang Weigun, Shi Yongjiu, et al. Seismic behaviors of steel plate shear wall structures with construction details and materials[J]. Journal of Constructional Steel Research, 2015, 107(17):194-210.
[2] Yu Jinguang, Feng Xiaotian, Li Bo. Performance of steel plate shear walls with axially loaded vertical boundary elements[J]. Thin-Walled Structure, 2018, 125(14):152-163.
[3] Yu Jinguang, Hao Jiping. Behaviour of semi-rigid steel frames with steel plate shear walls[J]. Advanced Steel Construction, 2016, 12(2):154-173.
[4] 于金光,郑春明,王雪军,等.框架柱横向撑杆对钢板剪力墙结构作用效应研究[J]. 工程力学, 2017, 34(12):192-201. Yu Jinguang, Zheng Chunming, Wang Xuejun, et al. Effect of transverse braces on the behavior of steel pate shear wall frame structure[J]. Engineering Mechanics, 2017, 34(12):192-201. (in Chinese)
[5] JGJ/T 380-2015, 钢板剪力墙技术规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T 380-2015, Technical specification for steel plate shear walls[S]. Beijing:China Architecture Industry Press, 2015. (in Chinese)
[6] 于金光,郝际平,李波. 考虑轴压作用下钢板剪力墙结构边框柱稳定性研究[J]. 地震工程与工程振动, 2015, 35(4):244-253. Yu Jinguang, Hao Jiping, Li Bo. Study on the stability of vertical boundary elements in steel plate shear walls under axial compression[J]. Earthquake Engineering And Engineering Dynamics, 2015, 35(4):244-253. (in Chinese)
[7] ANSI/AISC 341-05. Seismic provisions for structural steel buildings[S]. Chicago, IL:American Institute of Steel Construction, 2005.
[8] Lubell Adam S, Prion Helmut G L, Ventura Carlos E, et al. Unstiffened steel plate shear wall performance under cyclic loading[J]. Journal of Structural Engineering, 2000, 126(4):453-460.
[9] Vincent, Richard B. Design and application of partially encased non-compact composite columns forhighrise buildings[C]. Alberta, Canada:Proceedings of the Conference:Composite Construction in Steel and Concrete IV, 2000.
[10] Ehab M Hanna, Sameh M Gaawan. Experimental testing of partially encased composite beam columns[J]. Journal of Engineering Research and Applications, 2016, 6(1):64-71.
[11] Mehdi Dastfan, Robert Driver. Large-scale test of a modular steel plate shear wall with partially encased composite columns[J]. Journal of Structural Engineering, 2016, 142(2):141-150.
[12] Song Yuchen, Wang Renpeng, Li Jie. Local and post-local buckling behavior of welded steel shapes in partially encased composite columns[J]. Thin-Walled Structures, 2016, 108(9):93-108.
[13] Begum, Mahbuba, Driver Robert G, Elwi Alaa E. Behaviour of partially encased composite columns with high strength concrete[J]. Engineering Structures, 2013, 56(141):1718-1727.
[14] 方有珍, 马吉, 陆承铎, 等. 新型卷边钢板组合截面PEC柱(强轴)滞回性能试验研究[J]. 工程力学, 2013, 30(3):181-190. Fang Youzhen, Ma Ji, Lu Chengduo, et al. Test study on hysteretical behaviour of PEC columns (strong axis) fabricated with crimping thin-walled built-up section[J]. Engineerig Mechanics, 2013, 30(3):181-190. (in Chinese)
[15] 传光红, 陈以一. 部分填充式组合结构框架装配节点静力试验及受剪承载力计算[J]. 建筑结构学报, 2017, 38(8):83-91. Chuan Guanghong, Chen Yiyi. Static loading test and shear strength calculation of assembled frame connections of partially encased composite structures[J]. Journal of Building Structures, 2017, 38(8):83-91. (in Chinese)
[16] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(增刊1):71-77. Lin Dehui, Chen Yiyi. Overall stability analysis of partially encased composite columns[J]. Engineering Mechanics, 2019, 36(Suppl1):71-77. (in Chinese)
[17] 赵根田, 张宇鸣, 曹芙波, 等. 部分包裹混凝土组合柱-型钢梁端板连接框架抗震性能试验研究[J]. 建筑结构学报, 2017, 38(增刊):50-57. Zhao Gentian, Zhang Yuming, Cao Fubo, et al. Experimental research on sismic performance of PEC column-steel beam frame connected by end plate[J]. Journal of Building Structures, 2017, 38(Supp1):50-57. (in Chinese)
[18] JGJ/T 101-2015, 建筑抗震试验规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T 101-2015, Specification for seismic test of buildings[S]. Beijing:China Architecture Industry Press, 2015. (in Chinese).
[19] 陈树珍, 高德潜. 应变图解法与计算公式的改进[J].地震, 1983, 3(2):31-33. Cheng Shuzhen, Gao Deqian. Improvement of strain graphic methodand calculation formula[J]. Earthquake, 1983, 3(2):31-33. (in Chinese)
[20] Deng Xiaoyan. Behavior of steel plate shear wall fabricated with partially encased composite columns[D]. Alberta, Canada:University of Alberta, 2012.
[21] Tremblay R, Massicotte B, Filion I, et al. Experimental study on the behavior of partially encased composite columns made with light welded H steel shapes under compressive axial loads[C]. Atlanta:SSRC Annual Technical Meeting, 1998:195-204.
[22] Mirza S A. Parametric study of composite column strength variability[J]. Journal of Constructional Steel Research, 1989, 14(2):121-137.
[23] European Committee for Standardization (CEN). Brussels, Belgium:Design of composite steel and concrete structures, part 1-1:general rules and rules for building[S]. 1994.
[24] Qu Bing, Bruneau Michel. Seismic behavior and design of boundary frame members of steel plate shear walls[R]. Buffalo, New York:TechnicalRep. No. MCEER-08-0012, Multidisciplinary Center for Earthquake Engineering Research, 2008.
[25] CAN/CSA-S16.1-2001, Limit states design of steel structures[S]. Canadian Standard Association, 2002.
[26] Driver Robert G. Kulak, Geoffrey L Kennedy, Laurie D J, et al. Cyclic tests of four-story steel plate shear wall[J]. Journal of Structural Engineering, 1998, 124(2):112-120.
[27] Jeffrey W. Berman, Bruneau Michel. Experimental investigation of light-gauge steel plate shear walls[J]. Journal of Structural Engineering, 2005, 131(2):259-267.
[28] Qu Bing, Bruneau Michel, Chih-Han Lin, et al. Testing of full scale two-story steel plate shear wall with reduced beam sections connections and composite floors[J]. Journal of Structural Engineering, 2008, 134(3):364-373.
[29] Keh-Chyuan Tsai, Chao-Hsien Li, Chih-Han Lin, et al. Cyclic tests of four two-story narrow steel plate shear walls-part 1:analytical studies and specimen design[J]. Earthquake Engineering and Structural Dynamics, 2010, 39(7):775-799.
[30] Chao-Hsien Li, Keh-Chyuan Tsai, Chih-Han Lin, et al. Cyclic tests of four two-story narrow steel plate shear walls.Part2:experimental results and design implications[J]. Earthquake Engineering and Structural Dynamics, 2010, 39(7):801-826.
[31] Bruneau Michel, Uang Chia-ming, Rafael Sabelli. Ductile design of steel structures[M]. New York and London:Mc Graw-Hill, 1998.
[32] Myoung-Ho Oh, Young-Kyu Ju, Myeong-Han Kim, et al. Structural performance of steel-concrete composite column subjected to axial and flexural loading[J]. Journal of Aisan Architecture and Building Engineering, 2016, 5(1):153-160.
[33] Structural calculations of steel reinforced concrete structures[S]. Tokyo, Japan:Architectural Institute of Japan (AIJ), 1978.
[34] Qu Bing, Bruneau Michel. Behavior of vertical boundary elements in steel plate shear walls[J]. Engineering Journal. Second Quarter, 2010, 136(2):109-122.
[1] 王萌, 毕鹏, 李法雄. 带低屈服点钢材“延性保险丝”的钢框架盖板连接节点设计方法研究[J]. 工程力学, 2020, 37(2): 168-182.
[2] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[3] 王元清, 乔学良, 贾连光, 张天雄, 蒋庆林. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(S1): 59-65.
[4] 赵志鹏, 张瑞甫, 陈清军, 潘超, 王超. 基于减震比设计方法的惯容减震结构分析[J]. 工程力学, 2019, 36(S1): 125-130.
[5] 蔚博琛, 张敬书, 于晓旭, 柳涛. 楼梯间外纵墙一字形墙肢的稳定性问题及处理[J]. 工程力学, 2019, 36(8): 133-140.
[6] 杨勇, 孙东德, 张超瑞, 薛亦聪, 陈阳, 于云龙. 钢管高强混凝土叠合构件受剪承载能力试验研究[J]. 工程力学, 2019, 36(8): 182-191.
[7] 班慧勇, 白日升, 刘明, 李文斌, 白音. 钛-钢复合钢材力学性能及本构模型研究[J]. 工程力学, 2019, 36(7): 57-66.
[8] 刘嘉琳, 徐龙河. 带自复位耗能支撑钢板剪力墙墙板受力性能研究[J]. 工程力学, 2019, 36(7): 156-164.
[9] 邹慧辉, 陈万祥, 郭志昆, 周子欣. 火灾后钢管RPC柱近距离爆炸残余承载力研究[J]. 工程力学, 2019, 36(7): 184-196.
[10] 王威, 刘格炜, 苏三庆, 张龙旭, 任英子, 王鑫. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197-206,226.
[11] 王宇航, 刘元九, 周绪红. 腹板屈曲约束钢连梁抗震性能研究[J]. 工程力学, 2019, 36(6): 49-59,69.
[12] 杨勇, 薛亦聪, 于云龙. 预制装配型钢混凝土梁受剪承载力试验与计算方法研究[J]. 工程力学, 2019, 36(6): 92-100.
[13] 孙振宇, 张顶立, 房倩. 隧道锚固系统的协同作用及设计方法[J]. 工程力学, 2019, 36(5): 53-66,75.
[14] 于云龙, 杨勇, 薛亦聪, 刘亚平, 蒋雪雅. 型钢混凝土空腹叠合梁受剪承载力试验研究[J]. 工程力学, 2019, 36(3): 214-223.
[15] 张倩婧, 张磊, 童根树. 新型带竖向缝隙的矩形钢管排柱剪力墙及其抗侧性能[J]. 工程力学, 2019, 36(12): 153-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日