工程力学 ›› 2020, Vol. 37 ›› Issue (2): 90-97.doi: 10.6052/j.issn.1000-4750.2019.01.0100

• 土木工程学科 • 上一篇    下一篇

设置自复位支撑的钢筋混凝土框架结构抗震性能研究

徐龙河, 张格, 颜欣桐   

  1. 北京交通大学土木建筑工程学院, 北京 100044
  • 收稿日期:2019-03-05 修回日期:2019-07-02 出版日期:2020-02-25 发布日期:2020-01-19
  • 通讯作者: 徐龙河(1976-),男,黑龙江人,教授,博士,博导,主要从事结构抗震与健康监测研究(E-mail:lhxu@bjtu.edu.cn). E-mail:lhxu@bjtu.edu.cn
  • 作者简介:张格(1995-),女,陕西人,博士生,主要从事结构抗震研究(E-mail:17115337@bjtu.edu.cn);颜欣桐(1993-),男,重庆人,硕士生,主要从事结构抗震研究(E-mail:15121117@bjtu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51578058);北京市自然科学基金项目(8172038)

SEISMIC PERFORMANCE STUDY OF REINFORCED CONCRETE FRAME WITH SELF-CENTERING BRACES

XU Long-he, ZHANG Ge, YAN Xin-tong   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2019-03-05 Revised:2019-07-02 Online:2020-02-25 Published:2020-01-19

摘要: 提出了一种能准确描述预压弹簧自复位耗能(PS-SCED)支撑滞回性能的力学模型,引入状态变量区分支撑不同工作阶段从而确定其力学响应。基于ABAQUS平台对该力学模型进行二次开发,将开发的PS-SCED支撑单元模拟结果与支撑力学性能试验结果进行对比,并对设置PS-SCED支撑的3层钢筋混凝土框架结构进行抗震性能分析。结果表明:该支撑单元模拟得到的滞回曲线与试验结果吻合较好,可准确描述支撑在动力荷载作用下的力学性能;强震作用下,PS-SCED支撑能够充分耗散地震能量,有效控制结构的塑性变形;此外,PS-SCED支撑框架结构相比于原框架结构残余变形减小了72.1%~92.1%。PS-SCED支撑具备良好的耗能能力和自复位特性,能够显著提高钢筋混凝土框架结构的抗震性能。

关键词: 自复位耗能支撑, 力学模型, 钢筋混凝土框架结构, 抗震性能, 耗能能力, 残余变形

Abstract: A mechanical model is proposed accurately describe the hysteretic behavior of pre-pressed spring self-centering energy dissipation (PS-SCED) brace. The state variables are introduced to distinguish different stages of PS-SCED brace and then its mechanical responses are determined. The secondary development of the mechanical model is carried out based on ABAQUS. The simulation results of the developed PS-SCED brace element are compared with the test results of the brace, and the seismic performances of a 3-story reinforced concrete frame structure with PS-SCED braces are analyzed. The results indicate that the hysteretic curves obtained from the brace element simulation agree well with the test results, and the brace element is accurate enough to describe the mechanical performance of the brace under dynamic loads. The seismic energy dissipates sufficiently and the plastic deformation of the structure is controlled effectively by PS-SCED braces subjected to strong earthquake. Additionally, the residual deformations of frame structure with PS-SCED braces are reduced by 72.1%~92.1% compared with the original frame structure. The PS-SCED brace exhibits full hysteretic performances with good energy dissipation capacity and self-centering behavior, which significantly improves the seismic performances of reinforced concrete frame structures.

Key words: self-centering energy dissipation brace, mechanical model, reinforced concrete frame structure, seismic performance, energy dissipation capacity, residual deformation

中图分类号: 

  • TU352.11
[1] Asgarian B, Amirhesari N. A comparison of dynamic nonlinear behavior of ordinary and buckling restrained braced frames subjected to strong ground motion[J]. The Structural Design of Tall and Special Buildings, 2008, 17(2):367-386.
[2] 周云,钱洪涛,褚洪民,等. 新型防屈曲耗能支撑设计原理与性能研究[J]. 土木工程学报, 2009, 42(4):64-71. Zhou Yun, Qian Hongtao, Chu Hongmin, et al. A study on the design principle and performance of a new type of buckling-restrained brace[J]. China Civil Engineering Journal, 2009, 42(4):64-71. (in Chinese)
[3] 高向宇, 张慧, 杜海燕, 等. 防屈曲支撑恢复力的特点及计算模型研究[J]. 工程力学, 2011, 28(6):19-28. Gao Xiangyu, Zhang Hui, Du Haiyan, et al. Study on characterization and modeling of buckling-restrained brace[J]. Engineering Mechanics, 2011, 28(6):19-28. (in Chinese)
[4] 郭彦林, 童精中, 周鹏. 防屈曲支撑的型式、设计理论与应用研究进展[J]. 工程力学, 2016, 33(9):1-14. Guo Yanlin, Tong Jingzhong, Zhou Peng. Research progress of buckling restrained braces:Types, design methods and application[J]. Engineering Mechanics, 2016, 33(9):1-14. (in Chinese)
[5] Christopoulos C, Tremblay R, Kim H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures:Development and validation[J]. Journal of Structural Engineering, 2008, 134(1):96-107.
[6] Tremblay R, Lacerte M, Christopoulos C. Seismic response of multistory buildings with self-centering energy dissipative steel braces[J]. Journal of Structural Engineering, ASCE, 2008, 134(1):108-120.
[7] Zhu S Y, Zhang Y F. Performance based seismic design of steel braced frame system with self-centering friction damping brace[C]//Proceedings of the 18th Analysis and Computation Specialty Conference. Vancouver, British Columbia, Canada, American Society of Civil Engineers, 2008:1-13
[8] 宋子文. 自复位耗能支撑结构的地震响应分析[D]. 哈尔滨:哈尔滨工业大学, 2010. Song Ziwen. Seismic response analysis of structures with self-centering energy dissipation braces[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
[9] 徐龙河, 王坤鹏, 谢行思, 等. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7):39-46. Xu Longhe, Wang Kunpeng, Xie Xingsi, et al. Study on hysteretic model and seismic performance of damping energy dissipation brace with self-centering capability[J]. Engineering Mechanics, 2018, 35(7):39-46. (in Chinese)
[10] 徐龙河, 谢行思, 李忠献. 自复位变阻尼耗能支撑的力学原理与性能研究[J]. 工程力学, 2018, 35(1):201-208. Xu Longhe, Xie Xingsi, Li Zhongxian. Mechanics and performance study of self-centering variable damping energy dissipation brace[J]. Engineering Mechanics, 2018, 35(1):201-208. (in Chinese)
[11] 樊晓伟, 徐龙河, 李忠献. 预压弹簧自恢复耗能支撑非线性原理模型参数识别及试验验证[J]. 土木工程学报, 2018, 51(7):29-35. Fan Xiaowei, Xu Longhe, Li Zhongxian. Parameter identification and experimental verification of nonlinear principle model for pre-pressed spring self-centering energy dissipation braces[J]. China Civil Engineering Journal, 2018, 51(7):29-35. (in Chinese)
[12] Xu L H, Fan X W, Lu D C, et al. Hysteretic behavior studies of self-centering energy dissipation bracing system[J]. Steel and Composite Structures, 2016, 20(6):1205-1219.
[13] Xu L H, Fan X W, Lu D C, et al. Development and experimental verification of a pre-pressed spring selfcentering energy dissipation brace[J]. Engineering Structures, 2016, 127:49-61.
[14] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture and Building Press, 2010. (in Chinese)
[15] 周颖, 顾安琪. 自复位剪力墙结构四水准抗震设防下基于位移抗震设计方法[J]. 建筑结构学报, 2019, 40(3):118-126. Zhou Ying, Gu Anqi. Displacement-based seismic design of self-centering shear walls under four-level seismic fortifications[J]. Journal of Building Structures, 2019, 40(3):118-126. (in Chinese)
[1] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124-133.
[2] 李补拴, 路瑶, 赵根田, 闻洋. PEC柱-异形钢梁框架中节点抗震性能试验研究[J]. 工程力学, 2020, 37(1): 126-134.
[3] 邓明科, 李琦琦, 刘海勃, 景武斌. 高延性混凝土低矮剪力墙抗震性能试验研究及抗剪承载力计算[J]. 工程力学, 2020, 37(1): 63-72.
[4] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[5] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[6] 张浩, 连鸣, 苏明周, 程倩倩, 关彬林. 含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(S1): 78-85.
[7] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[8] 赵宪忠, 戴柳丝, 黄兆祺, 任重. 钢货架结构研究现状与关键技术[J]. 工程力学, 2019, 36(8): 1-15.
[9] 王宇航, 王雨嫣, 胡少伟. 海洋结构CFRP环向约束钢管混凝土柱在压弯扭荷载下的力学性能研究[J]. 工程力学, 2019, 36(8): 96-105.
[10] 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141-148.
[11] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式钢管混凝土格构柱拟动力试验研究[J]. 工程力学, 2019, 36(7): 67-78.
[12] 侯立群, 闫维明, 陈适才, 陆新征. 内置角钢改进夹心节点抗震性能研究与抗剪承载力计算[J]. 工程力学, 2019, 36(7): 79-88.
[13] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[14] 刘嘉琳, 徐龙河. 带自复位耗能支撑钢板剪力墙墙板受力性能研究[J]. 工程力学, 2019, 36(7): 156-164.
[15] 王宇航, 刘元九, 周绪红. 腹板屈曲约束钢连梁抗震性能研究[J]. 工程力学, 2019, 36(6): 49-59,69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日