工程力学 ›› 2020, Vol. 37 ›› Issue (2): 81-89,144.doi: 10.6052/j.issn.1000-4750.2019.01.0092

• 土木工程学科 • 上一篇    下一篇

单层空间网格结构刚性节点优化设计方法研究

叶继红1, 陆明飞2   

  1. 1. 江苏省土木工程环境灾变与结构可靠性重点实验室, 中国矿业大学, 徐州 221116;
    2. 混凝土与预应力混凝土结构教育部重点实验室, 东南大学, 南京 211102
  • 收稿日期:2019-03-05 修回日期:2019-06-28 出版日期:2020-02-25 发布日期:2020-01-19
  • 通讯作者: 叶继红(1967-),女,广东人,教授,博士,从事空间结构研究(E-mail:jhye@cumt.edu.cn). E-mail:jhye@cumt.edu.cn
  • 作者简介:陆明飞(1991-),男,江苏人,博士生,从事空间结构研究(E-mail:lmflumingfei@163com).
  • 基金资助:
    国家重点研发资助计划项目(2017YFC1500702);中央高校基本科研业务费专项资金项目,江苏省研究生科研与实践创新计划项目(KYCX17_0123)

DESIGN OPTIMIZATION METHOD OF RIGID NODES IN SINGLE-LAYER GRIDSHELLS

YE Ji-hong1, LU Ming-fei2   

  1. 1. Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, Xuzhou 221116, China;
    2. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 211102, China
  • Received:2019-03-05 Revised:2019-06-28 Online:2020-02-25 Published:2020-01-19

摘要: 单层网格结构中的节点不仅须传递轴力,也须传递两个方向上的弯矩。因此,单层网格结构中的节点为受力复杂的刚性节点,应具有合理的结构形式和良好的力学性能。同时,单层网格结构节点连接复杂、高空施工难度大,节点与杆件应有可靠、方便、通用的连接方式。该文提出了单层网格结构刚性节点优化设计方法:通过构造设计节点端,实现节点与杆件的连接;通过对受力复杂的节点核进行拓扑优化,开发高效的受力节点形式。在优化模型中,通过与外荷载无关的自平衡力系表示节点弯曲刚度,使得优化后的节点在任意方向上均有良好的弯矩传递能力。为避免拓扑优化中将力直接施加在设计域而导致的应力奇异问题及节点形式受限的缺点,通过施加加速度场,以体积惯性力等效集中荷载,降低了优化结果对边界条件的敏感性,获得了稳定、可靠的优化结果,解决了刚性节点拓扑优化中的关键技术难点。并以一个实际结构中的节点为例进行优化设计。通过分析节点端连接性能、力学性能以及与传统节点进行对比,验证了将拓扑优化和构造设计相结合的刚性节点优化设计方法。

关键词: 单层网格结构, 刚性节点, 优化设计, 拓扑优化, 刚性连接。

Abstract: The nodes in single-layer gridshells transmit axial forces and moments along two axes simultaneously. Therefore, the nodes in single-layer gridshells, which bear a complex combination of forces and moments, should have reasonable configurations and excellent mechanical performances as rigid connections. Moreover, because of the difficulty of assembling of the gridshell high above the ground and the complexity of the gridshell's configuration, the connections between nodes and members should be reliable, convenient and applicable to any situation. This paper proposes a design optimization method of rigid nodes in single-layer gridshells. The end piece of the node is firstly configured so that a bar can be connected to the node easily. Subsequently, topology optimization is carried out upon the node core to explore highly-efficient configurations. In the optimization model, the rotational stiffness of the node is represented by a set of self-equilibrium moments which are irrelevant to loads, and thus the optimal nodes can transmit moments from any direction. Applying the force directly upon the design domain will cause some problems, such as the stress singularity and limitations for the topology optimization to explore other potential configurations. To solve this key problem, an inertia action, which is generated by applying an acceleration field, is applied to be equivalent to the concentrated force. With this equivalence, reliable and stable optimal results are obtained which are insensitive to the boundary conditions. Finally, a real-life node is designed and optimized as an example. The analysis of the connection of the optimal node to tube members and the analysis of mechanical performances of the optimal nodes are conducted. And the optimal node is compared with the traditional node. The analyses and comparison verify the proposed design optimization method, which combines the design of connection and topology optimization.

Key words: single-layer gridshell, rigid nodes, structural optimization, topology optimization, rigid connection

中图分类号: 

  • TU391
[1] Elipe M D Á, Díaz J A. Review of contemporary architecture projects based on nature geometries[J]. Revista de la Construcción. (Journal of Construction), 2018, 17(2):215-221.
[2] Oh J, Ju Y K, Hwang K J, et al. FREE node for a single layer free-form envelope subjected to bending moment[J]. Engineering Structures, 2016, 106:25-35.
[3] JGJ 7-2010, 空间网格结构技术规程[S]. 北京:中国建筑工业出版社, 2010. JGJ 7-2010, Technical Specification for Space Frame Structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[4] 范重, 杨苏, 栾海强. 空间结构节点设计研究进展与实践[J]. 建筑结构学报, 2011, 32(12):1-15.Fan Zhong, Yang Su, Luan Haiqiang. Research progress and practice of design of spatial structure joints[J]. Journal of building structures, 2011, 32(12):1-15. (in Chinese)
[5] Chan S L. Nonlinear static and dynamic analysis of space frames with semi-rigid connections[J]. International Journal of Space Structures, 1993, 8(4):261-269.
[6] Chenaghlou M R. Semi-rigidity of connections in space structures[D]. Guildford:University of Surrey, 1997.
[7] Fathelbab F A. The effect of joints on the stability of shallow single layer lattice domes[D]. UK, Cambridge:University of Cambridge, 1987.
[8] Lopez A, Puente I, Aizpurua H. Experimental and analytical studies on the rotational stiffness of joints for single-layer structures[J]. Engineering Structures, 2011, 33(3):731-737.
[9] Fan F, Ma H, Cao Z, et al. A new classification system for the joints used in lattice shells[J]. Thin-walled structures, 2011, 49(12):1544-1553.
[10] Han Q, Liu Y, Xu Y. Stiffness characteristics of joints and influence on the stability of single-layer latticed domes[J]. Thin-Walled Structures, 2016, 107:514-525.
[11] Jihong Ye, Mingfei Lu. Optimization of domes against instability[J]. Steel And Composite Structures, 2018, 28(4):427-438.
[12] Kato S, Murata M. Dynamic elasto-plastic buckling simulation system for single layer reticular domes with semi-rigid connections under multiple loadings[J]. International Journal of Space Structures, 1997, 12(3-4):161-172.
[13] Liu W, Ye J. Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm[J]. Journal of Constructional Steel Research, 2014, 97:59-68.
[14] Eurocode 3:Design of steel structures-Part 1-8:Design of joints[S]. European Committee for Standardization, 2005.
[15] 马会环, 范峰, 曹正罡, 沈世钊. 半刚性螺栓球节点单层球面网壳受力性能研究[J]. 工程力学, 2009, 26(11):73-079. Ma Huihuan, Fan Feng, Cao Zhenggang, Shen Shizhao. Mechanical performance of single-layer reticulated domes with semi-rigid bolt-ball joints[J]. Engineering Mechanics, 2009, 26(11):73-079. (in Chinese)
[16] 范峰, 马会环, 沈世钊. 半刚性螺栓球节点受力性能理论与试验研究[J]. 工程力学, 2009, 26(12):92-099. Fan Feng, Ma Huihuan, Shen Shizhao. Numerical simulation and experimeantal study on mechanical characters of bolt-ball joint system[J]. Engineering Mechanics, 2009, 26(12):92-099. (in Chinese)
[17] López A, Puente I, Serna M A. Numerical model and experimental tests on single-layer latticed domes with semi-rigid joints[J]. Computers & Structures, 2007, 85(7/8):360-374.
[18] Tran H T. Optimum design of Geodesic dome's jointing system[C]//IOP Conference Series:Earth and Environmental Science. IOP Publishing, 2018, 143(1):012042.
[19] Ma H, Fan F, Zhong J, et al. Stability analysis of single-layer elliptical paraboloid latticed shells with semi-rigid joints[J]. Thin-walled structures, 2013, 72:128-138.
[20] Li S, Li X, Xue S, et al. Strength performance of threaded-sleeve connector under axial force[J]. Advances in Structural Engineering, 2016, 19(7):1177-1189.
[21] Feng R, Liu F, Yan G, et al. Mechanical behavior of Ring-sleeve joints of single-layer reticulated shells[J]. Journal of Constructional Steel Research, 2017, 128:601-610.
[22] 马会环, 余凌伟, 王伟,范峰. 铝合金半刚性椭圆抛物面网壳静力稳定性分析[J]. 工程力学, 2017, 34(11):158-166. Ma Huihuan, Yu Lingwei, Wang Wei, Fan Feng. Static stability of aluminium single-layer elliptical parabolic latticed shell with semi-rigid joints[J]. Engineering Mechanics, 2017, 34(11):158-166. (in Chinese)
[23] Makowski Z S. Development of jointing systems for modular prefabricated steel space structures[C]//Proceedings of the International Symposium, Warsaw, Poland, 2002:17-41.
[24] 翁振江, 赵阳, 金跃东等. 空间网格结构装配式节点分类与发展需求[J]. 建筑结构学报, 2018, 39(3):32-38, 47. Weng Zhenjiang, Zhao Yang, Jin Yuedong, et al. Classification and development demand of assembled connectors in space grid structures[J]. Journal of Building Structures, 2018, 39(3):32-38, 47. (in Chinese)
[25] Lu X, Xu J, Zhang H, et al. Topology optimization of the photovoltaic panel connector in high-rise buildings[J]. Structural Engineering and Mechanics, 2017, 62(4):465-475.
[26] Ren S, Galjaard S. Topology optimisation for steel structural design with additive manufacturing[M]//Modelling Behaviour, Cham, Springer, 2015:35-44.
[27] Galjaard S, Hofman S, Ren S. New opportunities to optimize structural designs in metal by using additive manufacturing[M]//Advances in Architectural Geometry 2014. Cham, Springer, 2015:79-93.
[28] 赵阳, 陈敏超, 王震. 面向增材制造的索杆结构节点拓扑优化设计[J]. 建筑结构学报, 2019, 40(3):58-68. Zhao Yang, Chen Minchao, Wang Zhen. Additive manufacturing oriented topology optimization of nodes in cable-strut structures[J]. Journal of Building Structures, 2019, 40(3):58-69. (in Chinese)
[29] Seifi H, Javan A R, Xu S, et al. Design optimization and additive manufacturing of nodes in gridshell structures[J]. Engineering Structures, 2018, 160:161-170.
[30] Seifi H, Xie M, O'Donnell J, et al. Design and fabrication of structural connections using bi-directional evolutionary structural optimization and additive manufacturing[C]//Applied Mechanics and Materials. Trans Tech Publications, 2016, 846:571-576.
[31] Arciszewski T. Design of joints in steel space structures[C]//Third international conference on space structures. 1984:695-699.
[32] Bangash M Y H, Bangash T. Elements of spatial structures:analysis and design[M]. London:Thomas Telford, 2003.
[33] Sigmund O, Maute K. Topology optimization approaches[J]. Structural and Multidisciplinary Optimization, 2013, 48(6):1031-1055.
[34] 白伟, 李取浩, 陈文炯, 刘书田. 基于映射的拓扑优化最大尺寸控制方法[J]. 工程力学, 2017, 34(9):18-26. Bai Wei, Li Quhao, Chen Wenjiong, Liu Shutian. A novel projection based method for imposing maximum length scale in topology optimization[J]. Engineering Mechanics, 2017, 34(9):18-26. (in Chinese)
[35] Bendsøe M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1(4):193-202.
[36] Zhou M, Rozvany G I N. The COC algorithm, Part II:Topological, geometrical and generalized shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1/2/3):309-336.
[37] 罗永峰, 沈祖炎. 网壳结构节点体对其承载性能的影响[J]. 同济大学学报(自然科学版), 1995, 23(1):21-25. Luo Yongfeng, Shen Zuyan. Effects of the joint size of the reticulated shell on its loading capacity[J]. Journal of Tongji University (Natural Science), 1995, 23(1):21-25. (in Chinese)
[38] 刘海锋, 罗尧治, 许贤. 焊接球节点刚度对网壳结构有限元分析精度的影响[J]. 工程力学, 2013, 30(1):350-358, 364. Liu Haifeng, Luo Yaozhi, Xu Xian. Rigidity of welded hollow spherical joints on finite element analysis precession of reticulated shells[J]. Engineering Mechanics, 2013, 30(1):350-358, 364. (in Chinese)
[39] Fan F, Ma H, Cao Z, et al. Direct estimation of critical load for single-layer reticulated domes with semi-rigid joints[J]. International Journal of Space Structures, 2010, 25(1):15-24.
[40] Thomas D. Costs, benefits, and adoption of additive manufacturing:a supply chain perspective[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5/6/7/8):1857-1876.
[1] 杨绿峰, 宋沙沙, 刘嘉达仁. 钢桁架结构稳定性与两层面强度优化设计研究[J]. 工程力学, 2020, 37(1): 207-217,256.
[2] 范峰, 马会环, 马越洋. 半刚性节点网壳结构研究进展及关键问题[J]. 工程力学, 2019, 36(7): 1-7,29.
[3] 许本胜, 臧朝平, 缪辉, 张根辈. 结构动力鲁棒优化设计方法综述[J]. 工程力学, 2019, 36(4): 24-36.
[4] 赵清海, 张洪信, 华青松, 蒋荣超, 袁林. 周期性多材料结构稳态热传导拓扑优化设计[J]. 工程力学, 2019, 36(3): 247-256.
[5] 潘超, 张瑞甫, 王超, 逯静洲. 单自由度混联II型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36(1): 129-137,145.
[6] 蒲利东, 罗务揆, 严泽洲. 气动伺服弹性系统结构陷幅滤波器优化设计[J]. 工程力学, 2018, 35(4): 235-241.
[7] 周大为, 陈飙松, 李云鹏, 张盛. 基于广义模态截断扩增方法的结构频响拓扑变量灵敏度分析[J]. 工程力学, 2018, 35(11): 1-7,16.
[8] 杨简, 陈宝春, 沈秀将, 林毅焌. UHPC单轴拉伸试验狗骨试件优化设计[J]. 工程力学, 2018, 35(10): 37-46,55.
[9] 王多智, 李文亮, 支旭东. 考虑有檩体系屋面系统的网壳结构静力稳定性分析[J]. 工程力学, 2017, 34(增刊): 71-77,98.
[10] 白伟, 李取浩, 陈文炯, 刘书田. 基于映射的拓扑优化最大尺寸控制方法[J]. 工程力学, 2017, 34(9): 18-26.
[11] 布欣, 谷倩, 王新武. 剖分T型钢梁柱连接框架中柱空间节点抗震试验研究[J]. 工程力学, 2017, 34(8): 105-116.
[12] 彭细荣, 隋允康. 基于ICM法的高层建筑大型支撑体系拓扑优化[J]. 工程力学, 2017, 34(5): 17-22,51.
[13] 陈春强, 陈前. 电流变夹层板的拓扑优化研究[J]. 工程力学, 2016, 33(增刊): 290-295.
[14] 邓开来, 潘鹏. 变截面软钢剪切阻尼器试验研究[J]. 工程力学, 2016, 33(5): 82-88.
[15] 金树, 任宗栋, 李宏男, 张卓群. 输电塔结构离散变量优化设计方法[J]. 工程力学, 2016, 33(11): 84-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日