工程力学 ›› 2020, Vol. 37 ›› Issue (1): 43-52.doi: 10.6052/j.issn.1000-4750.2019.01.0035

• 基本方法 • 上一篇    下一篇

基于Hoek-Brown准则的应变软化模型有限元数值实现研究

金俊超, 佘成学, 尚朋阳   

  1. 武汉大学水资源与水电工程科学国家重点实验室, 湖北, 武汉 430072
  • 收稿日期:2019-01-20 修回日期:2019-04-19 出版日期:2020-01-29 发布日期:2019-08-23
  • 通讯作者: 佘成学(1964-),男,浙江人,教授,博士,博导,从事水工结构与岩土结构工程方面的教学与研究工作(E-mail:cxshe@126.com) E-mail:cxshe@126.com
  • 作者简介:金俊超(1992-),男,河南人,博士生,主要从事岩石流变力学理论及数值模拟方面的研究工作(E-mail:jinjunchao@whu.edu.cn)尚朋阳(1994-),男,河南人,硕士生,主要从事岩石隧洞工程数值模拟方面的研究工作(E-mail:335772239@qq.com)

A FINITE ELEMENT IMPLEMENTATION OF THE STRAIN-SOFTENING MODEL BASED ON THE HOEK-BROWN CRITERION

JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang   

  1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2019-01-20 Revised:2019-04-19 Online:2020-01-29 Published:2019-08-23

摘要: 研究提出一种Hoek-Brown(H-B)准则应变软化模型的有限元数值实现方法。分析当前不同脆塑性计算方法的合理性,发现塑性位势跌落可正确计算岩石不同类型破坏,而偏应力等比例跌落和最小主应力不变跌落均存在不足。在此基础上,推导写出基于塑性位势跌落的H-B准则脆塑性隐式本构积分算法,及H-B准则理想弹塑性隐式本构积分算法,并采用一系列应力跌落-塑性流动,将H-B准则应变软化模型嵌入有限元软件ABAQUS中。比较应变软化圆隧围岩收敛位移及应力分布的解析解与本文有限元解,发现二者吻合良好,验证了所建H-B准则应变软化模型的正确性。对某薄上覆盖岩层高内水压输水隧洞工程的计算结果表明,相较理想弹塑性模型,所建应变软化模型可正确反映隧洞顶部围岩塑性区贯通引起的整体结构失稳破坏现象,为工程选择衬砌方案提供依据。

关键词: Hoek-Brown准则, 脆塑性, 应变软化, 本构积分算法, 有限元

Abstract: A finite element method to model the Hoek-Brown (H-B) criterion with the strain-softening behavior is presented. Firstly, the reasonability of the current brittle-plastic calculation methods is analyzed. It is found that the plastic potential theory based on the Il'yushin's postulation can correctly capture different types of rock failure, while the methods based on the deviator stress dropping or the constant minor principal stress in the brittle-plastic process both have shortcomings. Then, with respect to the H-B criterion, the brittle-plastic implicit constitutive integration algorithm based on the plastic potential theory is deduced, while the elastic-perfectly plastic implicit constitutive integration algorithm is also presented. With a series of stress dropping and perfectly plastic flow, the strain-softening model is embedded in the program ABAQUS. It is validated by comparing the finite element calculations of the displacement curve and the stress distribution in the surrounding rock mass with strain-softening behavior of a circular tunnel with analytical solutions, showing good agreement between them. Finally, the calculation results of a diversion tunnel with thin rock overburden under high internal water pressure show that the proposed model has great advantages over the elastic-perfectly plastic model in predicting the instability failure caused by plastic run-through on the top of the tunnel, providing a reference for further lining design.

Key words: the Hoek-Brown criterion, brittle-plastic, strain-softening, constitutive integration algorithm, FEM

中图分类号: 

  • TU452
[1] 朱合华, 张琦, 章连洋. Hoek-Brown强度准则研究进展与应用综述[J]. 岩石力学与工程学报, 2013, 32(10):1945-1963. Zhu Hehua, Zhang Qi, Zhang Lianyang. Review of research progresses and applications of Hoek-Brown strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10):1945-1963. (in Chinese)
[2] Eberhardt E. The Hoek-Brown failure criterion[J]. Rock Mechanics and Rock Engineering. 2012, 45(6):981-988.
[3] 张磊, 刘保国. 考虑抗拉强度的岩石强度准则对比分析[J]. 工程力学, 2016, 33(11):201-207. Zhang Lei, Liu Baoguo. A comparison study of rock strength criteria[J]. Engineering Mechanics, 2016, 33(11):201-207. (in Chinese)
[4] 孙振宇, 张顶立, 房倩, 等. 基于超前加固的深埋隧道围岩力学特性研究[J]. 工程力学, 2018, 35(2):92-104. Sun Zhenyu, Zhang Dingli, Fang Qian, et al. research on the mechanical property of the surrounding rock of deep-buried tunnel based on the advanced reinforcemente[J]. Engineering Mechanics, 2018, 35(2):92-104. (in Chinese)
[5] Feng W, Dong S, Wang Q, et al. Improving the Hoek-Brown criterion based on the disturbance factor and geological strength index quantification[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 108:96-104.
[6] Hoek E, Brown E T. The Hoek-Brown failure criterion and GSI-2018 edition[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019,11(3):445-463.
[7] Clausen J, Damkilde L. An exact implementation of the Hoek-Brown criterion for elasto-plastic finite element calculations[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45:831-847.
[8] 陈培帅, 陈卫忠, 贾善坡, 等. Hoek-Brown准则的主应力回映算法及其二次开发[J]. 岩土力学, 2011, 32(7):2211-2218. Chen Peishuai, Chen Weizhong, Jia Shanpo, et al. Stress return mapping algorithm of Hoek-Brown criterion in principal stress space and its redevelopment[J]. Rock and Soil Mechanics, 2011, 32(7):2211-2218. (in Chinese)
[9] Karaoulanis F E. Implicit numerical integration of nonsmooth multisurface yield criteria in the principal stress space[J]. Archives of Computational Methods in Engineering, 2013, 20(3):263-308.
[10] 朱合华, 黄伯麒, 张琦, 等. 基于广义Hoek-Brown准则的弹塑性本构模型及其数值实现[J]. 工程力学, 2016, 33(2):41-49. Zhu Hehua, Huang Boqi, Zhang Qi, et al. Elastoplastic rock constitutive model based on generalized Hoek-brown strength criterion and its numerical implementation[J]. Engineering Mechanics, 2016, 33(2):41-49. (in Chinese)
[11] Zhu H, Zhang Q, Huang B, et al. A constitutive model based on the modified generalized three-dimensional Hoek-Brown strength criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98:78-87.
[12] 周兴涛, 盛谦, 崔臻, 等. 基于C2阶连续函数的广义Hoek-Brown强度准则屈服面与塑性势面棱角圆化方法[J]. 岩土力学, 2018, 39(增刊1):477-487. Zhou Xingtao, Sheng Qian, Cui Zhen, et al. C2 continuous approximation to generalized Hoek-Brown strength criterion yield surface and plastic potential surface[J]. Rock and Soil Mechanics, 2018, 39(Suppl1):477-487. (in Chinese)
[13] Dai Z, You T, Xu X, et al. Removal of singularities in Hoek-Brown criterion and its numerical implementation and applications[J]. International Journal of Geomechanics, 2018, 18(10):4018127.
[14] 舒才, 施峰, 胡国忠, 等. 基于广义Hoek-Brown屈服准则的非线性弹塑性岩石(体)本构模型及其数值实现[J]. 岩石力学与工程学报, 2016, 35(增刊1):2627-2634. Shu Cai, Shi Feng, Hu Guozhong, et al. Development of nonlinear elasto-plastic constitutive model for rock based on Hoek-Brown yield criterion and its numerical implementation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Suppl1):2627-2634. (in Chinese)
[15] Sørensen E S, Clausen J, Damkilde L. Finite element implementation of the Hoek-Brown material model with general strain softening behavior[J]. International Journal of Rock Mechanics and Mining Sciences. 2015, 78:163-174.
[16] Zheng H, Liu D F, Lee C F, et al. Principle of analysis of brittle-plastic rock mass[J]. International Journal of Solids and Structures, 2005, 42(1):139-158.
[17] Wang S, Zheng H, Li C, et al. A finite element implementation of strain-softening rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48:67-76.
[18] 王水林, 郑宏, 刘泉声, 等. 应变软化岩体分析原理及其应用[J]. 岩土力学, 2014, 35(3):609-622. Wang Shuilin, Zheng Hong, Liu Quansheng, et al. Principle of analysis of strain-softening rockmass and its application[J]. Rock and Soil Mechanics, 2014, 35(3):609-622. (in Chinese)
[19] 沈新普, 岑章志, 徐秉业. 弹脆塑性软化本构理论的特点及其数值计算[J]. 清华大学学报(自然科学版), 1995, 35(2):22-27. Shen Xinpu, Cen Zhangzhi, Xu Bingye. The characteristics of elasto-brittle-plastic softening constitutive theory and its numerical calculation[J]. Journal of Tsinghua University (Sci. & Tech.), 1995, 35(2):22-27. (in Chinese)
[20] Pan P, Feng X, Hudson J A. Numerical simulations of Class I and Class II uniaxial compression curves using an elasto-plastic cellular automaton and a linear combination of stress and strain as the control method[J]. International Journal of Rock Mechanics and Mining Sciences. 2006, 43:1109-1117.
[21] 刘文政. 脆塑性结构极限载荷的计算与工程应用[D]. 北京:清华大学, 1989. Liu Wenzheng. Load bearing capacity calculation of brittle-plastic structures and its application to engineering practice[D]. Beijing:Tsinghua University, 1989. (in Chinese)
[22] Jaiswal A, Shrivastva B K. Numerical simulation of coal pillar strength[J]. International Journal of Rock Mechanics and Mining Sciences. 2009, 46:779-788.
[23] Tan X, Konietzky H, Frühwirt T. Laboratory observation and numerical simulation of permeability evolution during progressive failure of brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences. 2014, 68:167-176.
[24] Souley M, Renaud V, Al Heib M, et al. Numerical investigation of the development of the excavation damaged zone around a deep polymetallic ore mine[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106:165-175.
[25] Lee Y, Pietruszczak S. A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass[J]. Tunnelling and Underground Space Technology, 2008, 23(5):588-599.
[26] Wang S, Yin X, Tang H, et al. A new approach for analyzing circular tunnel in strain-softening rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47:170-178.
[27] Zhang Q, Jiang B, Wang S, et al. Elasto-plastic analysis of a circular opening in strain-softening rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50:38-46.
[28] DL/T 5057-2009, 水工混凝土结构设计规范[S]. 北京:中国电力出版社, 2009. DL/T 5057-2009, Design specification for hydraulic concrete structures[S]. Beijing:China Electric Power Press, 2009. (in Chinese)
[1] 许梦飞, 姜谙男, 史洪涛, 李兴盛. 基于Hoek-Brown准则的岩体弹塑性损伤模型及其应力回映算法研究[J]. 工程力学, 2020, 37(1): 195-206.
[2] 袁驷, 孙浩涵. 二维自由振动问题的自适应有限元分析初探[J]. 工程力学, 2020, 37(1): 17-25.
[3] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[4] 邱天琦, 杨军, 吴志轩, 沈兆普, 梁宇钒. 复理石顺层边坡最危险岩层倾角及简化的单一层面模型[J]. 工程力学, 2019, 36(S1): 217-221,228.
[5] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[6] 王元清, 乔学良, 贾连光, 张天雄, 蒋庆林. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(S1): 59-65.
[7] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[8] 杨雅斌, 石广玉. 正交异性钢桥面板肋-面板焊缝疲劳验算的应力分析模型评估[J]. 工程力学, 2019, 36(S1): 98-105.
[9] 谢启芳, 张利朋, 王龙, 崔雅珍, 杨柳洁. 拔榫状态下直榫节点滞回性能有限元分析[J]. 工程力学, 2019, 36(S1): 138-143.
[10] 杨浩, 罗帅, 邢国然, 王伟. 杆梁组合结构的有限元分析[J]. 工程力学, 2019, 36(S1): 154-157,169.
[11] 陈恒, 肖映雄, 郭瑞奇. 基于p型自适应有限元法的混凝土骨料模型数值模拟[J]. 工程力学, 2019, 36(S1): 158-164.
[12] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[13] 赵兴乾, 帅长庚, 徐伟, 李正民. 船舶艉部整体隔振系统中轴承载荷增量研究[J]. 工程力学, 2019, 36(S1): 311-315.
[14] 刘岩钊, 尹首浮, 于桂兰. 周期格栅式表面波屏障的设计与性能研究[J]. 工程力学, 2019, 36(S1): 324-328.
[15] 田敏, 赵林, 焦双健, 葛耀君. 双曲壳结构非均匀风压作用局部稳定验算[J]. 工程力学, 2019, 36(9): 136-142,153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[2] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[3] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[4] 陈誉;刘飞飞. 正对称Pratt 桁架直腹杆受压大偏心N型圆钢管节点静力性能实验研究[J]. 工程力学, 2011, 28(11): 170 -177 .
[5] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[6] 王小兵;刘扬;崔海清;韩洪升. 螺旋流抑制杆管偏磨的PIV实验研究[J]. 工程力学, 2011, 28(11): 225 -230 .
[7] 郜新军;赵成刚;刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J]. 工程力学, 2011, 28(11): 237 -243 .
[8] 吕伟荣;王猛;刘锡军. 灌芯混凝土砌块砌体破坏准则研究[J]. 工程力学, 2011, 28(11): 251 -256 .
[9] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[10] 张嘎;张建民. 土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J]. 工程力学, 2006, 23(2): 72 -77 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日