工程力学 ›› 2020, Vol. 37 ›› Issue (1): 26-33.doi: 10.6052/j.issn.1000-4750.2019.01.0029

• 基本方法 • 上一篇    下一篇

单圆弧波纹管膜片的非线性大变形分析

韩明君, 王伟兵, 李鸿瑞, 周朝逾, 马连生   

  1. 兰州理工大学理学院, 甘肃, 兰州 730050
  • 收稿日期:2019-01-20 修回日期:2019-08-15 出版日期:2020-01-29 发布日期:2019-09-09
  • 通讯作者: 王伟兵(1933-),男,硕士生,主要从事结构非线性力学行为研究(E-mail:18393919612@163.com). E-mail:18393919612@163.com
  • 作者简介:韩明君(1975-),男,甘肃会宁人,副教授,博士,主要从事结构非线性力学行为及流体动密封技术研究(E-mail:hanmj5188@163.com);李鸿瑞(1994-),男,山东济南人,硕士生,主要从事结构非线性力学行为研究(E-mail:lihongruihehe@qq.com);周朝逾(1992-),男,甘肃靖远人,硕士生,主要从事结构非线性力学行为研究(E-mail:1643792337@qq.com);马连生(1963-),男,山东临朐人,教授,博士,主要从事新型材料结构的力学行为研究(E-mail:lsma@lut.cn).
  • 基金资助:
    国家自然科学基金项目(11472123,11862012);甘肃省高等学校科研项目(2015-A045)

NONLINEAR LAGER DEFORMATION ANALYSIS OF SINGLE ARC BELLOWS DIAPHRAGM

HAN Ming-jun, WANG Wei-bing, LI Hong-rui, ZHOU Chao-yu, MA Lian-sheng   

  1. School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • Received:2019-01-20 Revised:2019-08-15 Online:2020-01-29 Published:2019-09-09

摘要: 采用拟壳法把单圆弧波纹管膜片看作具有初始挠度圆环薄板的组合结构,用非线性大挠度弯曲理论对单圆弧膜片的非线性大变形进行了分析。选取膜片圆弧部分的最大变形处挠度为摄动参数,采用板壳理论的修正迭代法,对外周边固定内周边自由的单圆弧波纹管膜片进行了求解,由边界条件和连续性条件得到了精确度较高的二次解析解。通过波纹管膜片圆弧的矢高和波长绘制了圆弧最大挠度处的特征曲线,随着单弧膜片的矢量高度的增加,膜片的挠度非线性增大,随着单弧波纹管膜片的弧长变长,膜片的挠度非线性增加。

关键词: 波纹管膜片, 大变形, 非线性, 拟壳法, 修正迭代法

Abstract: The single arc bellows diaphragm is regarded as the combined structure of a circular plate with initial deflection by the method of simulated shell. Based on nonlinear large deflection bending theory, the nonlinear large deformation of a single circular diaphragm is analyzed. Taking the maximum deflection of the circular part of the diaphragm as a perturbation parameter and using modified iteration method of theory of plates and shells, the nonlinear large deformation of a single circular arc bellows diaphragm with one end fixed and another end free is solved. Under boundary conditions and continuity conditions, quadratic nonlinearity analytical solutions with higher accuracy are obtained. According to the vector height of the arc and the wavelength of the arc in a single circular arc bellows diaphragm, the characteristic curve of the maximum deflection of the arc is drawn. The characteristic curve is analyzed, the deflection of the diaphragm nonlinearly increases with the increase of the vector height of the single arc diaphragm, and the deflection of the diaphragm nonlinearly increases with the increase of the arc length of the single arc bellows diaphragm.

Key words: bellows diaphragm, large deformation, nonlinear, method of simulated shell, modified iteration method

中图分类号: 

  • O343.5
[1] 顾永泉. 流体动密封[M]. 北京:石油大学出版社, 1990. Gu Yongquan. Fluid dynamics seal[M]. Beijing:Petroleum University Press, 1990. (in Chinese)
[2] 安源胜. 机械密封用焊接金属波纹管失效机理研究[D]. 上海:华东理工大学, 2002. An Yuansheng. Failure mechanism of welded metal bellows for mechanical seals[D]. Shanghai:East China University of Science and Technology, 2002. (in Chinese)
[3] Nuer R, Gheni M, Ahmat M, et al. Fem analysis and optimization for welded metal bellows seal[J]. Advanced Materials Research, 2008, 33/34/35/36/37:1371-1376.
[4] Gheni M, Kikuchi M. Shape optimization of metal welded bellows seal based on the turing reactiondiffusion model coupled with fem[J]. Key Engineering Materials, 2008, 385-387:813-816.
[5] Musha H, Buhalqam G M. Shape optimization and strength evaluation of metal welded bellows wave of mechanical seal[J]. Advanced Materials Research, 2008, 33/34/35/36/37:1377-1382.
[6] 穆塔里夫阿赫迈德, 程伟, 阿斯耶姆肖凯提. S型焊接金属波纹管的应力仿真与试验研究[J]. 压力容器, 2010, 27(1):8-11. Ahmat M, Cheng Wei, Xiaokaiti A. Stress simulation and experimental research for s-shaped welded metal bellows[J]. Pressure Vessel Technology, 2010, 27(1):8-11. (in Chinese)
[7] Gheni M, Musha H, Yusup N, et al. Flexibility analysis of the welded metal bellows of mechanical seal[J]. Key Engineering Materials, 2011, 462/463:894-899.
[8] Ma K. Analysis on large-size s-shape welded metal bellow stiffness and sheet welded joint stress[J]. Lubrication Engineering, 2012, 37(12):65-68.
[9] Dinesh B P, Keerthi P S, Barani D M, et al. Analysis of static mechanical behaviour of metal bellows using finite element modeling[J]. Applied Mechanics & Materials, 2014, 592/593/594:996-1000.
[10] Zhang J, Ding X, Huang Y, et al. Structural dynamic analysis for welding metal bellows in dry gas seals[J]. Chemical Engineering & Machinery, 2010, 37(2):183-185, 191.
[11] 王新志. 在复合载荷作用下变厚度圆薄板大挠度问题[J]. 应用数学和力学, 1989, 10(2):102-114. Wang Xinzhi. Large deflection problem of circular plates with variable thickness under the action of combined loads[J]. Applied Mathematics and Mechanics, 1989, 10(2):102-114. (in Chinese)
[12] Wang X Z, Han M J, Zhao Y G, et al. Nonlinear natural frequency of shallow conical shiells with variable thickness[J]. Applied Mathematics and Mechanics, 2005, 26(3):277-282.
[13] Wang X Z, Han M J, Zhao Y G, et al. Nonlinear dynamical bifurcation and chaotic motion of shallow conical lattice shell[J]. Applied Mathematics & Mechanics, 2006, 27(5):661-666.
[14] 吕晨亮, 于建国, 叶庆泰. U型波纹管的扭转振动固有频率的计算[J]. 工程力学, 2005, 22(4):225-228. Lü Chenliang, Yu Jianguo, Ye Qingtai. Calculation of torsional natural frequency of U-shaped bellows[J]. Engineering Mechanics, 2005, 22(4):225-228. (in Chinese)
[15] 朱卫平. 复合载荷下波纹管横向非线性弯曲摄动有限元法[J]. 工程力学, 2003, 20(5):91-94. Zhu Weiping. Finite element perturbation method for nonlinear analysis of bellows under lateral compound Load[J]. Engineering Mechanics, 2003, 20(5):91-94. (in Chinese)
[16] 戴明, 孙慧玉. 含多个椭圆夹杂圆板的热弹性分析[J]. 工程力学, 2013, 30(6):47-53. Dai Ming, Sun Huiyu. Thermo-elastic analysis of a circular plate containing multiple elliptical inclusions[J]. Engineering Mechanics, 2013, 30(6):47-53. (in Chinese)
[17] Murphy G. Analysis of stress and displacements in heat exchange expansion joints[J]. Transactions of the American Society of Mechanical Engineers, 1952, 74(3):397-402.
[18] Aleksander K, Belyaev T V, Smirnov Z K K. Theoretical and experimental studies of the stress-strain state of expansion bellows as elastic shells[J]. St. Petersburg Polytechnical University Journal, 2017, 3:7-14.
[19] 袁鸿, 刘人怀. 均布载荷作用下带边缘大波纹膜片的非线性弯曲[J]. 力学学报, 2003, 35(1):14-20. Yuan Hong, Liu Renhuai. Nonlinear bending of vorrugated diaphragm with large boundary corrugation under uniform load[J]. Acta Mechanica Sinica, 2003, 35(1):14-20. (in Chinese)
[20] 刘人怀. 波纹环形板的非线性弯曲[J]. 中国科学:数学:中国科学, 1984, 27(3):247-253. Liu Renhuai. Nonlinear bend of corrugated annular plates[J]. Chinese Science Mathematics:Chinese Science, 1984, 27(3):247-253. (in Chinese)
[21] Liu R H, Wang F. Nonlinear stability of corrugated shallow spherical shell[J]. International Journal of Applied Mechanics & Engineering, 2005, 10(2):426-432.
[22] 徐芝纶. 弹性力学[M]. 北京:高等教育出版社, 1990. Xu Zhilun. Elastic mechanics[M]. Beijing:Higher Education Press, 1990. (in Chinese)
[23] 郑晓静. 圆薄板大挠度理论及应用[M]. 长春:吉林科学技术出版社, 1990. Zheng Xiaojing. Theory and application of large deflection of circular thin plate[M]. Changchun:Jilin Science and Technology Press, 1990. (in Chinese)
[1] 唐安特, 上官文斌, 潘孝勇, 刘文帅, 何青, AHMED Waizuddin. 橡胶隔振器高频动态特性的计算方法[J]. 工程力学, 2020, 37(1): 230-238.
[2] 曹胜涛, 李志山, 刘付钧, 黄忠海. 基于Bouc-Wen模型的消能减震结构显式非线性时程分析[J]. 工程力学, 2019, 36(S1): 17-24.
[3] 李佳龙, 李钢, 李宏男. 基于隔离非线性的实体单元模型与计算效率分析[J]. 工程力学, 2019, 36(9): 40-49,59.
[4] 许斌, 李靖. 未知地震激励下结构恢复力及质量非参数化识别[J]. 工程力学, 2019, 36(9): 180-187.
[5] 赵子翔, 苏小卒. 摇摆结构刚体模型研究综述[J]. 工程力学, 2019, 36(9): 12-24.
[6] 杨超, 罗尧治, 郑延丰. 正交异性膜材大变形行为的有限质点法求解[J]. 工程力学, 2019, 36(7): 18-29.
[7] 杨浩文, 吴斌, 潘天林, 谢金哲. Timoshenko梁能量守恒逐步积分算法[J]. 工程力学, 2019, 36(6): 21-28.
[8] 郑翥鹏, 邱昊, 夏丹丹, 雷鹰, 刘德全, 程棋锋. 未知激励下的无迹卡尔曼滤波新方法[J]. 工程力学, 2019, 36(6): 29-35,48.
[9] 曹胜涛, 李志山, 刘博. 基于显式摩擦摆单元的大规模复杂连体结构非线性时程分析[J]. 工程力学, 2019, 36(6): 128-137.
[10] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[11] 张肖雄, 贺佳. 基于扩展卡尔曼滤波的结构参数和荷载识别研究[J]. 工程力学, 2019, 36(4): 221-230.
[12] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[13] 陈洋洋, 陈凯, 谭平, 张家铭. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36(3): 149-158.
[14] 周茗如, 卢国文, 王腾, 王晋伟. 结构性黄土劈裂注浆力学机理分析[J]. 工程力学, 2019, 36(3): 169-181.
[15] 曹胜涛, 路德春, 杜修力, 赵密, 程星磊. 基于GPU并行计算的地下结构非线性动力分析软件平台开发[J]. 工程力学, 2019, 36(2): 53-65,86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
[2] 田力;高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究[J]. 工程力学, 2011, 28(11): 114 -123 .
[3] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[4] 李皓玉;杨绍普;齐月芹;徐步青. 移动随机荷载下沥青路面的动力学特性和参数影响分析[J]. 工程力学, 2011, 28(11): 159 -165 .
[5] 赵同峰;欧阳伟;郝晓彬. 方钢管钢骨高强混凝土压弯剪承载力分析[J]. 工程力学, 2011, 28(11): 153 -158, .
[6] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[7] 罗尧治;刘海锋;娄荣. 考虑焊接球节点变形的网壳结构多尺度有限元分析方法[J]. 工程力学, 2011, 28(11): 190 -196, .
[8] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[9] 王进廷;张楚汉;金峰. 有阻尼动力方程显式积分方法的精度研究[J]. 工程力学, 2006, 23(3): 1 -5 .
[10] 熊铁华;常晓林. 响应面法在结构体系可靠度分析中的应用[J]. 工程力学, 2006, 23(4): 58 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日