工程力学 ›› 2019, Vol. 36 ›› Issue (12): 206-217,256.doi: 10.6052/j.issn.1000-4750.2019.01.0015

• 土木工程学科 • 上一篇    下一篇

钢套管再生混凝土加固柱抗震性能及影响参数研究

陈庆军1,2, 梁竣杰1, 蔡健1,2, 黎哲1, 何岸1, 左志亮1,3   

  1. 1. 华南理工大学土木与交通学院, 广东, 广州 510641;
    2. 华南理工大学亚热带建筑科学国家重点试验室, 广东, 广州 510641;
    3. 代尔夫特理工大学土木工程与地球科学学院, 荷兰代尔夫特市
  • 收稿日期:2019-01-19 修回日期:2019-06-10 出版日期:2019-12-25 发布日期:2019-08-23
  • 通讯作者: 蔡健(1959-),男,广东潮州人,教授,博士,主要从事混凝土结构、组合结构、结构抗震等研究(E-mail:cvjcai@scut.edu.cn). E-mail:cvjcai@scut.edu.cn
  • 作者简介:陈庆军(1975-),男,广东潮州人,副教授,博士,主要从事钢-混凝土组合结构、结构仿真分析等研究(E-mail:qjchen@scut.edu.cn);梁竣杰(1994-),男,广东广州人,硕士生,主要从事结构仿真分析研究(E-mail:journal@junjie.im);黎哲(1993-),女,广西玉林人,硕士,主要从事结构仿真分析研究及结构设计(E-mail:lizhe_0326@163.com);何岸(1989-),男,广东揭阳人,博士,主要从事钢-混凝土组合结构研究(E-mail:an.he@mail.scut.edu.cn);左志亮(1982-),男,广东广州人,副教授,博士,主要从事钢-混凝土组合结构研究(E-mail:ctzlzuo@scut.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51578246);广东省自然科学基金项目(2017A030313263);华南理工大学亚热带建筑科学国家重点实验室自主研究课题项目(2018ZC11)

INVESTIGATION ON SEISMIC BEHAVIOR AND INFLUENCING PARAMETERS OF STEEL-JACKET STRENGTHENED COLUMNS WITH RECYCLED AGGREGATE CONCRETE

CHEN Qing-jun1,2, LIANG Jun-jie1, CAI Jian1,2, LI Zhe1, HE An1, ZUO Zhi-liang1,3   

  1. 1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong 510641, China;
    2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong 510641, China;
    3. Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
  • Received:2019-01-19 Revised:2019-06-10 Online:2019-12-25 Published:2019-08-23

摘要: 通过1个未加固的钢筋混凝土柱和9个钢套管加固钢筋混凝土柱的低周反复加载试验,研究了钢套管加固柱的抗震性能。随后在ABAQUS中,利用经试验校验的纤维梁模型,进行钢套管再生混凝土柱的数值模拟,并对相关影响因素进行参数化分析。结果表明:经钢套管再生混凝土加固后,钢筋混凝土柱的抗震性能显著提升;在所研究的参数范围内,轴压比小于0.58时,加固柱抗侧承载力随轴压比的增大而提高,但轴压比大于0.58时,加固柱抗侧承载力随轴压比的增大显著下降,且损伤发展速度加快;钢套管厚度能提升加固柱的抗震性能,但提升幅度随厚度的增加而减缓;原柱轴压比对加固柱的力学性能和破坏模式有较大影响,且初始压弯组合应力显著降低高轴压比加固柱的压弯承载力;在钢套管的有效约束下,再生混凝土对构件整体承载力的影响不明显,但使得构件的抗震性能有所下降。

关键词: 钢套管, 再生混凝土, 低周反复加载试验, 纤维梁模型, 参数化分析

Abstract: To investigate the aseismic behavior of steel-jacket strengthened columns with recycled aggregate concrete, low-cycle reversed loading tests were conducted on one normal reinforced concrete column and nine steel-jacket strengthened columns with recycled aggregate concrete. Then in ABAQUS, using the fiber beam model verified by experiments, the numerical simulation on steel-jacket strengthened columns was conducted, and the related influencing factors were analyzed by parametric analysis. The results show that the aseismic behavior of columns is significantly improved by taking this strengthen scheme. Based on the range of parameters adopted in this research, the lateral resistance capacity increases with the increase of axial compression ratio in a range less than 0.58, but it decreases obviously and the degree of damage develops faster with the increase of axial compression ratio in a range larger than 0.58. The aseismic performance can be improved by increasing the thickness of steel-jacket, but the effect gradually decreases with the increase of thickness. The axial compression ratio of the original column has a great influence on the mechanical properties and failure modes of the strengthened column, and the initial compressive-bending stress significantly reduces the flexural capacity of the strengthened columns which have high axial compression ratio. When the strengthened column is under the effective constraint of steel-jacket, the influence of recycled aggregate concrete on the overall bearing capacity of columns is not obvious, but it would lead to the decrease of aseismic performance.

Key words: steel jacket, recycled aggregate concrete, low-cycle reversed loading test, fiber beam model, parametric analysis

中图分类号: 

  • TU398
[1] Chai Y H, Priestley M J N, Seible F. Analytical model for steel-jacketed RC circular bridge columns[J]. Journal of Structural Engineering, 1994, 120(8):2358-2376.
[2] Priestley M J N, Seible F, Xiao Y, et al. Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength-Part 1:Theoretical considerations and test design[J]. ACI Structural Journal, 1994, 91(5):394-405.
[3] Priestley M J N, Seible F, Xiao Y, et al. Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength-Part 2:Test results and comparison with theory[J]. ACI Structural Journal, 1994, 91(5):537-551.
[4] Xiao Y, Wu H. Retrofit of reinforced concrete columns using partially stiffened steel jackets[J]. Journal of Structural Engineering, 2003, 129(6):725-732.
[5] Cai Jian, Xu Jin. Ultimate strength of reinforced concrete columns strengthened by circular steel jacketing[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(10):78-83.
[6] 卢亦焱, 龚田牛, 张学朋, 等. 外套钢管自密实混凝土加固钢筋混凝土圆柱轴压受力分析[J]. 工程力学, 2013, 30(9):158-165. Lu Yiyan, Gong Tianniu, Zhang Xuepeng, et al. Theoretical analysis of circular RC column strengthened with self-compacting concrete filled circular steel jacket under axial loading[J]. Engineering Mechanics, 2013, 30(9):158-165. (in Chinese)
[7] 卢亦焱, 薛继锋, 龚田牛, 等. 钢管自密实混凝土加固钢筋混凝土圆形短柱偏压性能研究[J]. 工程力学, 2015, 32(8):164-171, 181. Lu Yiyan, Xue Jifeng, Gong Tianniu, et al. Eccentric-loaded behavior of circular RC columns strengthened with self-compacting concrete filled steel tubes[J]. Engineering Mechanics, 2015, 32(8):164-171, 181. (in Chinese)
[8] 卢亦焱, 梁鸿骏, 李杉, 等. 方钢管自密实混凝土加固钢筋混凝土方形截面短柱轴压性能试验研究[J]. 建筑结构学报, 2015, 36(7):43-50. Lu Yiyan, Liang Hongjun, Li Shan, et al. Experimental study on behavior of square RC columns strengthened with self-compacting concrete filled square steel tubes under axial load[J]. Journal of Building Structures, 2015, 36(7):43-50. (in Chinese)
[9] Loo Y H, Tam C T, Ravindrarajah R S. Recycled concrete as fine and coarse aggregate in concrete[J]. Magazine of Concrete Research, 1987, 39(141):214-220.
[10] Ajdukiewicz A, Kliszczewicz A. Influences of recycled aggregates on mechanical properties of HS/HPC[J]. Cement & Concrete Composites, 2002, 24(2):269-279.
[11] Yang Y F, Ma G L. Experimental behaviour of recycled aggregate concrete filled stainless steel tube stub columns and beams[J]. Thin-Walled Structures, 2013, 66(3):62-75.
[12] 吴波, 刘伟, 刘琼祥, 等. 薄壁钢管再生混合短柱轴压性能试验研究[J]. 建筑结构学报, 2012, 33(9):22-28. Wu Bo, Liu Wei, Liu Qiongxiang, et al. Axial behavior of thin-walled steel stub columns filled with demolished concrete segment/lump[J]. Journal of Building Structures, 2012, 33(9):22-28. (in Chinese)
[13] Xiao J, Huang Y, Yang J, et al. Mechanical properties of confined recycled aggregate concrete under axial compression[J]. Construction & Building Materials, 2012, 26(1):291-295.
[14] Wang Y, Chen J, Geng Y. Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns[J]. Engineering Structures, 2015, 86(5):192-212.
[15] 张向冈, 陈宗平, 王讲美, 等. 钢管再生混凝土长柱偏压性能研究[J]. 工程力学, 2013, 30(3):331-340. Zhang Xianggang, Chen Zongping, Wang Jiangmei, et al. Study on eccentric compression behaviors of recycled aggregate concrete filled steel tubular long columns[J]. Engineering Mechanics, 2013, 30(3):331-340. (in Chinese)
[16] 陈宗平, 张向冈, 薛建阳, 等. 圆钢管再生混凝土柱抗震性能与影响因素分析[J]. 工程力学, 2016, 33(6):129-137. Chen Zhongping, Zhang Xianggang, Xue Jianyang, et al. Analysis on aseismic performance and influence factors of recycled concrete filled circular steel-tube columns[J]. Engineering Mechanics, 2016, 33(6):129-137. (in Chinese)
[17] He A, Cai J, Chen Q J, et al. Axial compressive behaviour of steel-jacket retrofitted RC columns with recycled aggregate concrete[J]. Construction & Building Materials, 2017, 141:501-516.
[18] 胡潇, 钱永久. 考虑二次受力圆形钢套管加固钢筋混凝土短柱轴心受压承载力研究[J]. 工程抗震与加固改造, 2013, 35(5):36-41. Hu Xiao, Qian Yongjiu. Study of bearing capacity of reinforced concrete short column strengthened by circular steel tube under axial loading considering twice loading[J]. Earthquake Resistant Engineering and Retrofitting, 2013, 35(5):36-41. (in Chinese)
[19] 权少华. 加固钢筋混凝土梁、柱构件的抗震性能研究[D]. 天津:天津大学, 2017. Quan Shaohua. Study on seismic behavior of reinforced concrete beams and columns[D]. Tianjin:Tianjin University, 2017. (in Chinese)
[20] 余勋藩. 粘钢加固钢筋混凝土柱有限元分析与参数化研究[D]. 广州:华南理工大学, 2015. Yu Xunfan. Parameterization and finite element analysis for RC column strengthening with externally bonded steel frame[D]. Guangzhou:South China University of Technology, 2015. (in Chinese)
[21] 聂建国, 王宇航. 基于ABAQUS的钢-混凝土组合结构纤维梁模型的开发及应用[J]. 工程力学, 2012, 29(1):70-80. Nie Jian-guo, Wang Yu-hang. Development and application of steel-concrete composite fiber beam model in abaqus platform[J]. Engineering Mechanics, 2012, 29(1):70-80. (in Chinese)
[22] 王强, 朱丽丽, 李哲, 等. ABAQUS显式分析梁单元的混凝土、钢筋本构模型[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(1):56-64. Wang Qiang, Zhu Lili, Li Zhe, et al. Study on the constitutive model of concrete and steel for explicit dynamic beam elements of ABAQUS[J]. Journal of Shenyang Jianzhu University (Natural Science), 2013, 29(1):56-64. (in Chinese)
[23] 雷拓, 刘伯权, 刘锋. 基于ABAQUS隐式分析的梁单元材料模型开发应用[J]. 中南大学学报(自然科学版), 2013(8):3503-3511. Lei Tuo, Liu Boquan, Liu Feng. Development and application of material constitutive models based on ABAQUS/Standard beam elements[J]. Journal of Central South University (Science and Technology), 2013(8):3503-3511. (in Chinese)
[24] 禚一, 李忠献. 精细化纤维梁柱单元模拟分析平台FENAP的开发[J]. 震灾防御技术, 2010, 5(2):242-247. Zhuo Yi, Li Zhongxian, Li Ning. FENAP simulation platform for refined beam-column fiber element[J]. Technology for Earthquake Disaster Prevention, 2010, 5(2):242-247. (in Chinese)
[25] 黎哲. 基于ABAQUS纤维梁单元的钢套管加固柱抗震性能研究[D]. 广州:华南理工大学, 2018. Li Zhe. Research on seismic behavior of RC column strengthened with steel-jacket based on ABAQUS fiber beam element[D]. Guangzhou:South China University of Technology, 2018. (in Chinese)
[26] 韩林海. 钢管混凝土结构:理论与实践[M]. 北京:科学出版社, 2007. Han Linhai. Concrete filled steel tube structure:Theory and practice[M]. Beijing:Science Press, 2007. (in Chinese)
[27] 杨有福. 钢管再生混凝土构件荷载-变形关系的理论分析[J]. 工业建筑, 2007, 37(12):1-6. Yang Youfu. Theoretical research on load-deformation relations of recycled aggregate concrete-filled steel tubular members[J]. Industrial Construction, 2007, 37(12):1-6. (in Chinese)
[28] Menegotto M. Method of analysis for cyclically loaded R. C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending[C]//Cosandey M. Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Zurich:International Association for Bridge and Structural Engineering, 1973:15-22.
[29] 何铭基. 带转换高层框架结构基于变形和损伤的抗震性能评估方法研究[D]. 广州:华南理工大学, 2013. He Mingji. Methodology study on seismic performance assessment based on deformation and damage for frame structure with transfer story[D]. Guangzhou:South China University of Technology, 2013. (in Chinese)
[1] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161-165,180.
[2] 马辉, 李三只, 李哲, 王振山, 梁炯丰. 型钢再生混凝土柱-钢梁组合框架节点抗剪承载力研究[J]. 工程力学, 2018, 35(7): 176-186.
[3] 王玉银, 王庆贺, 耿悦. 建筑结构用再生混凝土水平受力构件研究进展[J]. 工程力学, 2018, 35(4): 1-15.
[4] 郭宏超, 郝波, 刘云贺, 孙立建. 钢框架装配式再生混凝土墙结构抗震性能试验研究[J]. 工程力学, 2018, 35(1): 172-181.
[5] 曹芙波, 唐磊杰, 丁兵兵, 王晨霞. 冻融损伤后钢筋与再生混凝土黏结滑移性能试验研究[J]. 工程力学, 2017, 34(增刊): 244-251.
[6] 赵春风, 陈健云, 王静峰. AP1000核电厂房动力特性参数化分析与优化[J]. 工程力学, 2017, 34(增刊): 282-288.
[7] 肖建庄, 张凯建, 胡博, 陈恩慈. 基于可靠度分析的再生混凝土材料分项系数[J]. 工程力学, 2017, 34(6): 82-91.
[8] 肖建庄, 郑世同. 再生混凝土梁时变挠度分析与预测[J]. 工程力学, 2017, 34(4): 57-62.
[9] 马军卫, 潘金龙, 尹万云, 刘守城, 莫创. 灌浆套筒连接全装配式框架-剪力墙结构抗震性能试验研究[J]. 工程力学, 2017, 34(10): 178-187.
[10] 高亮, 薛建阳, 汪锦林. 型钢再生混凝土框架-再生砌块填充墙结构恢复力模型试验研究[J]. 工程力学, 2016, 33(9): 85-93.
[11] 陈宗平, 张向冈, 薛建阳, 苏益声. 全再生方钢管混凝土柱-钢筋混凝土梁框架的抗震性能试验研究[J]. 工程力学, 2016, 33(8): 32-38.
[12] 陈宗平, 张向冈, 薛建阳, 苏益声. 圆钢管再生混凝土柱抗震性能与影响因素分析[J]. 工程力学, 2016, 33(6): 129-137.
[13] 党争, 梁兴文, 代洁, 于婧. 考虑损伤的纤维增强混凝土剪力墙恢复力模型研究[J]. 工程力学, 2016, 33(5): 124-133.
[14] 陈宗平, 何天瑀, 占东辉. 钢筋再生混凝土柱的承压性能及强度计算[J]. 工程力学, 2016, 33(10): 129-137.
[15] 王兵, 刘晓, 赵磊, 高璐. 高温后方钢管再生混凝土短柱轴压受力性能分析[J]. 工程力学, 2015, 32(增刊): 153-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
[2] 田力;高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究[J]. 工程力学, 2011, 28(11): 114 -123 .
[3] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[4] 李皓玉;杨绍普;齐月芹;徐步青. 移动随机荷载下沥青路面的动力学特性和参数影响分析[J]. 工程力学, 2011, 28(11): 159 -165 .
[5] 赵同峰;欧阳伟;郝晓彬. 方钢管钢骨高强混凝土压弯剪承载力分析[J]. 工程力学, 2011, 28(11): 153 -158, .
[6] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[7] 罗尧治;刘海锋;娄荣. 考虑焊接球节点变形的网壳结构多尺度有限元分析方法[J]. 工程力学, 2011, 28(11): 190 -196, .
[8] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[9] 王进廷;张楚汉;金峰. 有阻尼动力方程显式积分方法的精度研究[J]. 工程力学, 2006, 23(3): 1 -5 .
[10] 熊铁华;常晓林. 响应面法在结构体系可靠度分析中的应用[J]. 工程力学, 2006, 23(4): 58 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日