工程力学 ›› 2019, Vol. 36 ›› Issue (12): 198-205.doi: 10.6052/j.issn.1000-4750.2019.01.0014

• 土木工程学科 • 上一篇    下一篇

侧移曲线对基于位移设计的多层自复位摩擦耗能支撑钢框架抗震性能影响研究

徐龙河, 杨雪飞   

  1. 北京交通大学土木建筑工程学院, 北京 100044
  • 收稿日期:2019-01-19 修回日期:2019-03-15 出版日期:2019-12-25 发布日期:2019-03-28
  • 通讯作者: 徐龙河(1976-),男,黑龙江人,教授,博士,博导,从事结构抗震与健康监测研究(E-mail:lhxu@bjtu.edu.cn). E-mail:lhxu@bjtu.edu.cn
  • 作者简介:杨雪飞(1993-),男,江西人,硕士生,从事结构抗震研究(E-mail:16121136@bjtu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51578058);北京市自然科学基金项目(8172038)

INFLUENCE OF LATERAL DISPLACEMENT CURVE ON THE SEISMIC PERFORMANCE OF MULTI-STORY SELF-CENTERING FRICTION ENERGY DISSIPATION BRACED STEEL FRAMES BASED ON DISPLACEMENT DESIGN

XU Long-he, YANG Xue-fei   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2019-01-19 Revised:2019-03-15 Online:2019-12-25 Published:2019-03-28

摘要: 采用直接基于位移的抗震设计方法时需预先确定结构的侧移曲线,但侧移曲线对设计结果和结构抗震性能的影响有待研究,为此该文以自复位摩擦耗能支撑钢框架为例,考虑结构非线性程度和层数,分析了3种典型侧移曲线对结构抗震性能的影响,为该类支撑钢框架结构的侧移曲线选择提供依据。结果表明:侧移曲线对3层支撑框架的基底剪力设计值影响不大,但对6层支撑框架的基底剪力有明显影响;楼层设计位移角随设计侧移曲线变化而变化,最终导致楼层设计刚度差别较大;3层以下低层自复位摩擦耗能支撑钢框架结构的实际侧移表现为线型,设计时建议采用线型侧移曲线,6层左右的多层结构的实际侧移表现为弯曲型,建议采用弯曲型侧移曲线进行设计。

关键词: 直接基于位移的抗震设计, 侧移曲线, 自复位支撑结构, 性能水平, 时程分析

Abstract: The lateral displacement curve needs to be defined in advance when employing the direct displacement-based seismic design method, and the influence of the curve on the design results and the seismic performance of the structure require further study. Taking the self-centering friction energy dissipation braced steel frames as examples, and considering the structural nonlinearity and the number of stories, the influence of three typical lateral displacement curves on the seismic performance of the structures was analyzed. Results showed that the lateral displacement curve had little effect on the design base shear force of the 3-story braced frame, but had a noticeable effect on the base shear force of the 6-story structure. The design values of inter-story drift ratio varied with the lateral displacement curve, resulting in a great change in story design stiffness. The actual lateral displacement curve was linear-type and bending-type for 3-story braced frame and the 6-story structure, respectively. It is recommended that the linear-type displacement curve could be used for the low-story structure below 3-story and the bending-type displacement curve for the multi-story structure about 6-story. This study is expected to provide a reference for the selection of lateral displacement curves of this type of braced steel frame structures.

Key words: direct displacement-based seismic design, lateral displacement curve, self-centering braced structure, performance level, time history analysis

中图分类号: 

  • TU318
[1] FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings[S]. Washington D. C., USA:Federal Emergency Management Agency, 2000.
[2] 郭彦林, 童精中, 周鹏. 防屈曲支撑的型式、设计理论与应用研究进展[J]. 工程力学, 2016, 33(9):1-14. Guo Yanlin, Tong Jingzhong, Zhou Peng. Research progress of buckling restrained braces:types, design methods and applications[J]. Engineering Mechanics, 2016, 33(9):1-14. (in Chinese)
[3] Christopoulos C, Tremblay R, Kim H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures:development and validation[J]. Journal of Structural Engineering, 2008, 134(1):96-107.
[4] Xu L H, Fan X W, Li Z X. Experimental behavior and analysis of self-centering steel brace with pre-pressed disc springs[J]. Journal of Constructional Steel Research, 2017, 139:363-373.
[5] Xu L H, Xie X S, Li Z X. Development and experimental study of a self-centering variable damping energy dissipation brace[J]. Engineering Structures, 2018, 160:270-280.
[6] 熊二刚, 张倩. 中心支撑钢框架结构基于性能的塑性抗震设计[J]. 振动与冲击, 2013, 32(19):32-38. Xiong Ergang, Zhang Qian. Performance-based plastic design method for steel concentrically braced frames[J]. Journal of Vibration and Shock, 2013, 32(19):32-38.(in Chinese)
[7] 梁兴文. 结构抗震性能设计理论与方法[M]. 北京:科学出版社, 2011:1-15. Liang Xingwen. Theory and approach of structural performance-based seismic design[M]. Beijing:Science Press, 2011:1-15. (in Chinese)
[8] 姚谦峰, 常鹏. 工程结构抗震分析[M]. 北京:清华大学出版社, 2012:219-220. Yao Qianfeng, Chang Peng. Seismic analysis of engineering structures[M]. Beijing:Tsinghua University Press, 2012:219-220. (in Chinese)
[9] 杨博雅, 吕西林. 预应力预制混凝土剪力墙结构直接基于位移的抗震设计方法及应用[J]. 工程力学, 2018, 35(2):59-66, 75. Yang Boya, Lü Xilin. Direct displacement-based aseismic design and application for prestressed precast concrete shear-wall structures[J]. Engineering Mechanics, 2018, 35(2):59-66, 75. (in Chinese)
[10] 周颖, 顾安琪. 自复位剪力墙结构四水准抗震设防下基于位移抗震设计方法[J]. 建筑结构学报, 2019, 40(3):118-126. Zhou Ying, Gu Anqi. Displacement-based seismic design of self-centering shear walls under four-level seismic fortifications[J]. Journal of Building Structures, 2019, 40(3):118-126. (in Chinese)
[11] 楚留声, 刘静, 王伸伟, 等. SRC柱-钢梁混合框架直接基于位移的抗震设计方法研究[J]. 工程力学, 2018, 35(8):100-110. Chu Liusheng, Liu Jing, Wang Shenwei, et al. Direct displacement-based seismic design method of SRC column-steel beam hybrid frames[J]. Engineering Mechanics, 2018, 35(8):100-110. (in Chinese)
[12] Wijesundara K K, Rajeev P. Direct displacement-based seismic design of steel concentric braced frame structures[J]. Australian Journal of Structural Engineering, 2012, 13(3):243-257.
[13] Della Corte G, Mazzolani F M. Theoretical developments and numerical verification of a displacement-based design procedure for steel braced structures[C]. Beijing:Proceedings of the 14th World Conference on Earthquake Engineering, 2008:12-17.
[14] Zhu S, Zhang Y. Performance based seismic design of steel braced frame system with self-centering friction damping brace[C]. Canda:Structures Congress 2008:18th Analysis and Computation Specialty Conference, 2008:1-13.
[15] GB50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50011-2010, Seismic design code for buildings[S]. Beijing:China Architectural Industry Press, 2010. (in Chinese)
[16] 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, doi:10.6052/j.issn.1000-4750.2018.07.0406. Xu Longhe, Yang Xuefei. Direct displacement-based brace parameters design and analyses of steel frame with self-centering braces[J]. Engineering Mechanics, doi:10.6052/j.issn.1000-4750.2018.07.0406. (in Chinese)
[17] Priestley M J N, Calvi G M, Kowalsky M J. Displacement based seismic design of structures[M]. Italy:IUSS Press, 2007:306-310.
[18] Sullivan T J. Direct displacement-based seismic design of steel eccentrically braced frame structures[J]. Bulletin of Earthquake Engineering, 2013, 11(6):2197-2231.
[19] Krawinkler H, Seneviratna G. Pros and cons of a pushover analysis of seismic performance evaluation[J]. Engineering structures, 1998, 20(4/5/6):452-464.
[20] 简斌, 翁健, 金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7):205-211, 225. Jian Bin, Weng Jian, Jin Yunfei. Direct displacement-based seismic design for prestressed concrete frame structures[J]. Engineering Mechanics, 2010, 27(7):205-211, 225. (in Chinese)
[21] Chen Z Y, Ge H B, Kasai A, et al. Simplified seismic design approach for steel portal frame piers with hysteretic dampers[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(4):541-562.
[22] 钱稼茹, 赵作周, 纪晓东, 等. 高层建筑结构设计[M]. 北京:中国建筑工业出版社, 2018:31-36. Qian Jiaru, Zhao Zuozhou, Ji Xiaodong, et al. Design of high-rise building structure[M]. Beijing:China Architectural Industry Press, 2018:31-36. (in Chinese)
[23] 吕洋, 熊峰, 葛琪. 基于非弹性位移的土-结构相互作用的抗震设计方法[J]. 工程科学与技术, 2018, 50(3):142-148. Lü Yang, Xiong Feng, Ge Qi. Inelastic displacementbased seismic design method for soil-structure interaction systems[J]. Advanced Engineering Sciences. 2018, 50(3):142-148. (in Chinese)
[1] 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141-148.
[2] 曹胜涛, 李志山, 刘博. 基于显式摩擦摆单元的大规模复杂连体结构非线性时程分析[J]. 工程力学, 2019, 36(6): 128-137.
[3] 张锐, 李宏男, 王东升, 成虎. 结构时程分析中强震记录选取研究综述[J]. 工程力学, 2019, 36(2): 1-16.
[4] 喻莹, 刘飞鸿, 王钦华, 罗尧治, 李洋. 有限质点法阻尼构造问题的研究[J]. 工程力学, 2019, 36(11): 34-40.
[5] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 损伤可控的含减震外挂墙板RC框架结构抗震性能分析[J]. 工程力学, 2019, 36(10): 144-151.
[6] 赵志, 戴靠山, 毛振西, 张采薇. 不同频谱特性地震动下风电塔破坏分析[J]. 工程力学, 2018, 35(S1): 293-299.
[7] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
[8] 楚留声, 刘静, 王伸伟, 赵军. SRC柱-钢梁混合框架直接基于位移的抗震设计方法研究[J]. 工程力学, 2018, 35(8): 100-110.
[9] 张锐, 成虎, 吴浩, 王东升. 时程分析考虑高阶振型影响的多频段地震波选择方法研究[J]. 工程力学, 2018, 35(6): 162-172.
[10] 杨博雅, 吕西林. 预应力预制混凝土剪力墙结构直接基于位移的抗震设计方法及应用[J]. 工程力学, 2018, 35(2): 59-66,75.
[11] 徐善华, 张宗星, 李柔, 位龙虎. 锈蚀钢框架地震易损性评定方法[J]. 工程力学, 2018, 35(12): 107-115.
[12] 张磊鑫, 龙晓鸿, 樊剑, 陈蓓蕾. 考虑碰撞的隔震桥梁易损性分析[J]. 工程力学, 2017, 34(增刊): 99-104.
[13] 程庆乐, 曾翔, 熊琛, 许镇, 陆新征. 区域建筑震害模拟方法分析对比[J]. 工程力学, 2017, 34(增刊): 105-110,128.
[14] 范重, 刘涛, 陈巍, 杨开. 基础刚度对高层建筑抗震性能影响研究[J]. 工程力学, 2017, 34(7): 203-213.
[15] 司炳君, 谷明洋, 孙治国, 杜敏. 近断层地震动下摇摆-自复位桥墩地震反应分析[J]. 工程力学, 2017, 34(10): 87-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[2] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[3] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[4] 陈誉;刘飞飞. 正对称Pratt 桁架直腹杆受压大偏心N型圆钢管节点静力性能实验研究[J]. 工程力学, 2011, 28(11): 170 -177 .
[5] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[6] 王小兵;刘扬;崔海清;韩洪升. 螺旋流抑制杆管偏磨的PIV实验研究[J]. 工程力学, 2011, 28(11): 225 -230 .
[7] 郜新军;赵成刚;刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J]. 工程力学, 2011, 28(11): 237 -243 .
[8] 吕伟荣;王猛;刘锡军. 灌芯混凝土砌块砌体破坏准则研究[J]. 工程力学, 2011, 28(11): 251 -256 .
[9] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[10] 张嘎;张建民. 土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J]. 工程力学, 2006, 23(2): 72 -77 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日