工程力学 ›› 2019, Vol. 36 ›› Issue (12): 188-197.doi: 10.6052/j.issn.1000-4750.2019.01.0013

• 土木工程学科 • 上一篇    下一篇

新型连梁剪力墙结构拟静力试验研究

许国山1,2,3, 童兴4, 宁西占5, 吴斌6   

  1. 1. 哈尔滨工业大学土木工程学院, 哈尔滨 150090;
    2. 哈尔滨工业大学, 结构工程灾变与控制教育部重点实验室, 哈尔滨 150090;
    3. 哈尔滨工业大学, 土木工程智能防灾减灾工业和信息化部重点实验室, 哈尔滨 150090;
    4. 中南建筑设计院股份有限公司, 武汉 430071;
    5. 华侨大学土木工程学院, 厦门 361021;
    6. 武汉理工大学土木工程与建筑学院, 武汉 430070
  • 收稿日期:2019-01-10 修回日期:2019-07-28 出版日期:2019-12-25 发布日期:2019-11-11
  • 通讯作者: 许国山(1980-),男,辽宁人,副教授,博士,硕导,主要从事结构试验技术方面研究(E-mail:xuguoshan@hit.edu.cn). E-mail:xuguoshan@hit.edu.cn
  • 作者简介:童兴(1993-),男,安徽人,硕士生,主要从事防灾减灾方面研究(E-mail:tongxing_237@163.com);宁西占(1987-),男,河北人,讲师,博士,主要从事混合试验技术方面研究(E-mail:xzning@hqu.edu.cn);吴斌(1970-),男,武汉人,教授,博士,博导,主要从事结构试验技术方面研究(E-mail:bin.wu@hit.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2017YFC0703605);国家自然科学基金项目(51778190,51978213);黑龙江省博士后科研启动基金(LBH-Q15059)

QUASI-STATIC TEST STUDY OF COUPLED SHEAR WALLS WITH A NEW TYPE OF COUPLING BEAMS

XU Guo-shan1,2,3, TONG Xing4, NING Xi-zhan5, WU Bin6   

  1. 1. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China;
    2. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, China;
    3. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, 150090, China;
    4. Central-South Architectural Design Institute Co Ltd, Wuhan 430071, China;
    5. College of Civil Engineering, Huaqiao University, Xiamen 361021, China;
    6. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
  • Received:2019-01-10 Revised:2019-07-28 Online:2019-12-25 Published:2019-11-11

摘要: 设计了两个足尺的单层双肢剪力墙试件,其中一个带有传统的钢筋混凝土连梁,另一个连梁中安装有改进的三角钢板阻尼器,通过拟静力试验研究两个试件的屈服破坏模式和抗震性能。研究结果表明:这种新型连梁的耗能能力和变形能力明显优于传统连梁,刚度和强度退化小于传统连梁;新型连梁的变形和耗能都集中在阻尼器中,混凝土连梁基本保持完好,阻尼器能够很好地控制结构的损伤,有利于实现连梁震后的可更换。

关键词: 耗能连梁, 可更换连梁, 双肢剪力墙, 三角钢板阻尼器, 拟静力试验

Abstract: Two full-scale single-story coupled shear wall specimens were designed, one with traditional reinforced concrete coupling beams and the other with improved triangular steel plate dampers. The yield failure modes and seismic performance of the two specimens were studied by quasi-static tests. The results show that the energy dissipation and deformation capacity of the new type of coupling beams were obviously larger than those of the traditional coupling beams. The stiffness and strength degradations were less than those of the traditional coupling beams. The deformation and energy dissipation of the new type of coupling beams were concentrated in the dampers. The concrete coupling beams were generally in good condition. The dampers can control structural damage well, which is conducive to the replacement of the coupling beams after earthquakes.

Key words: energy-dissipating coupling beam, replaceable coupling beam, coupled shear wall, triangular steel plate damper, quasi-static test

中图分类号: 

  • TU352.11
[1] Paulay T, Binney J R. Diagonally reinforced coupling beams of shear walls[J]. ACI Special Publication, 1974, 42:579-598.
[2] Tegos I A, Penelis G G. Seismic resistance of short columns and coupling beams reinforced with inclined bars[J]. Structural Journal, 1988, 85(1):82-88.
[3] 曹云锋, 张彬彬, 赵杰林, 等. 改善洞口连梁抗震性能的一种有效配筋方案[J]. 重庆建筑大学学报, 2003, 25(5):24-30. Cao Yunfeng, Zhang Binbin, Zhao Jielin, et al. An efficacious reinforcing pattern of coupling beams for improving its earthquake resistance[J]. Journal of Chongqing Jianzhu University, 2003, 25(5):24-30. (in Chinese)
[4] Lam W Y, Su R K, Pam H J. Strength and ductility of embedded steel composite coupling beams[J]. Advances in Structural Engineering, 2003, 6(1):23-35.
[5] Hassan M, EI-Tawil S. Inelastic dynamic behavior of hybrid coupled walls[J]. Journal of Structural Engineering, 2004, 130(2):285-296.
[6] Fortney P J, Shahrooz B M, Rassati G A. Large-scale testing of a replaceable "fuse" steel coupling beam[J]. Journal of Structural Engineering, 2007, 133(12):1801-1807.
[7] Ahn T S, Kim Y J, Kim S D. Large-scale testing of coupled shear wall structures with damping devices[J]. Advances in Structural Engineering, 2013, 16(11):1943-1956.
[8] 纪晓东, 马琦峰, 王彦栋, 等. 钢连梁可更换消能梁段抗震性能试验研究[J]. 建筑结构学报, 2014, 35(6):1-11. Ji Xiaodong, Ma Qifeng, Wang Yandong, et al. Cyclic tests of replaceable shear links in steel coupling beams[J]. Journal of Building Structures, 2014, 35(6):1-11. (in Chinese)
[9] 纪晓东, 王彦栋, 马琦峰, 等. 可更换钢连梁抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10):1-10. Ji Xiaodong, Wang Yandong, Ma Qifeng, et al. Experimental study on seismic behavior of replaceable steel coupling beams[J]. Journal of Building Structures, 2015, 36(10):1-10. (in Chinese)
[10] Oh S H, Choi K Y, Kim H J, et al. Experimental validation on dynamic response of RC shear wall systems coupled with hybrid energy dissipative devices[C]//15WCEE. Lisbon, Portugal, Curran Associates, Inc, 2015:8433-8441.
[11] 吕西林, 陈云, 蒋欢军. 带可更换连梁的双肢剪力墙抗震性能试验研究[J]. 同济大学学报(自然科学版), 2014, 42(2):175-182. Lv Xilin, Chen Yun, Jiang Huanjun. Experimental study of seismic performance of coupled shear wall structure with replaceable coupling beams[J]. Journal of Tongji University(Natural Science), 2014, 42(2):175-182. (in Chinese)
[12] 滕军, 马伯涛, 李卫华, 等. 联肢剪力墙连梁阻尼器伪静力试验研究[J]. 建筑结构学报, 2010, 31(12):92-100. Teng Jun, Ma Botao, Li Weihua, et al. Pseudo-static test for coupling beam damper of coupled shear wall structure[J]. Journal of Building Structures, 2010, 31(12):92-100. (in Chinese)
[13] 毛晨曦, 王大磊, 王涛, 等. 安装SMA阻尼器的钢筋混凝土连梁拟静力试验[J]. 地震工程与工程振动, 2014, 34(4):140-147. Mao Chenxi, Wang Dalei, Wang Tao, et al. Pseudo-static tests of reinforced concrete coupling beams equipped with SAM dampers[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4):140-147. (in Chinese)
[14] 刘文锋, 高丽燕, 何玉敖. 消能减震剪力墙结构体系的最优设计[J]. 工程力学, 2005, 22(3):97-101. Liu Wenfeng, Gao Liyan, He Yu'ao. Optimization of shear wall structure with energy dissipation devices[J]. Engineering Mechanics, 2005, 22(3):97-101. (in Chinese)
[15] 田建勃, 史庆轩, 刘云贺, 等. PRC连梁-混合联肢剪力墙抗震性能分析[J]. 工程力学, 2018, 35(11):59-73. Tian Jianbo, Shi Qingxuan, Liu Yunhe, et al. Research on aseismic performance of PRC coupling beam-hybrid coupled shear wall system[J]. Engineering Mechanics, 2018, 35(11):59-73. (in Chinese)
[16] 孙建, 邱洪兴, 陆波. 新型全装配式混凝土剪力墙(含水平缝节点)的整体性能[J]. 工程力学, 2016, 33(1):133-140. Sun Jian, Qiu Hongxing, Lu Bo. Overall performance of an innovative precast shear wall with horizontal connection[J]. Engineering Mechanics, 2016, 33(1):133-140. (in Chinese)
[17] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究. 工程力学, 2019, 36(3):139-148. Zhu Zhangfeng, Guo Zhengxing. Aseismic experimental research on I-shaped precast concrete shear walls with vertical and horizontal joints[J]. Engineering Mechanics, 2019, 36(3):139-148.
[18] 马军卫, 潘金龙, 尹万云, 等. 灌浆套筒连接全装配式框架-剪力墙结构抗震性能试验研究[J]. 工程力学, 2017, 34(10):178-187. Ma Junwei, Pan Jinlong, Yin Wanyun, et al. Experimental study on seismic performance of full precast shear wall-frame structures with reinforcement spliced by grout-filled sleeves[J]. Engineering Mechanics, 2017, 34(10):178-187. (in Chinese)
[19] Xu G, Wang Z, Wu B, et al. Seismic performance of precast shear wall with sleeves connection based on experimental and numerical studies[J]. Engineering Structures. 2017, 150:346-358.
[20] Xu G, Wang Z, Wu B, et al. Pseudodynamic tests with substructuring of a full-scale precast box-modularized structure made of reinforced concrete shear walls[J]. The Structural Design of Tall and Special Buildings, 2017, 26(16):e1354.
[21] JGJ/T 101-2015, 建筑抗震试验规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T 101-2015, Specification for seismic test of buildings[S]. Beijing:China Architecture Industry Press, 2015. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[3] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[4] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[5] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[6] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[7] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[8] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[9] 朱柏洁, 张令心, 王涛. 轴力作用下剪切钢板阻尼器力学性能试验研究[J]. 工程力学, 2018, 35(S1): 140-144.
[10] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138.
[11] 韩强, 贾振雷, 王晓强, 黄超. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150,190.
[12] 郑山锁, 刘巍, 左河山, 董立国, 李强强. 近海大气环境下考虑锈蚀的不同剪跨比RC框架梁抗震性能试验[J]. 工程力学, 2018, 35(4): 78-86.
[13] 种迅, 万金亮, 蒋庆, 叶献国, 王德才, 邢伟, 邵徽斌. 水平拼缝部位增强叠合板式剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(4): 107-114.
[14] 杨青顺, 甄伟, 陆新征, 解琳琳, 林楷奇. 带端部阻尼器伸臂桁架的抗震性能试验研究[J]. 工程力学, 2018, 35(2): 47-58.
[15] 陈明, 王启. 内填钢板墙双肢冷轧C型钢框架抗震性能[J]. 工程力学, 2018, 35(12): 175-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[2] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[3] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[4] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[5] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[6] 李皓玉;杨绍普;齐月芹;徐步青. 移动随机荷载下沥青路面的动力学特性和参数影响分析[J]. 工程力学, 2011, 28(11): 159 -165 .
[7] 赵同峰;欧阳伟;郝晓彬. 方钢管钢骨高强混凝土压弯剪承载力分析[J]. 工程力学, 2011, 28(11): 153 -158, .
[8] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[9] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[10] 陈誉;刘飞飞. 正对称Pratt 桁架直腹杆受压大偏心N型圆钢管节点静力性能实验研究[J]. 工程力学, 2011, 28(11): 170 -177 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日