工程力学 ›› 2020, Vol. 37 ›› Issue (3): 56-65.doi: 10.6052/j.issn.1000-4750.2019.01.0012

• 土木工程学科 • 上一篇    下一篇

基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析

金浏, 杨旺贤, 余文轩, 杜修力   

  1. 北京工业大学城市减灾与防灾防护教育部重点实验室, 北京 100124
  • 收稿日期:2019-01-12 修回日期:2019-04-04 出版日期:2020-03-25 发布日期:2019-04-29
  • 通讯作者: 杜修力(1962-),男,四川广安人,长江学者特聘教授,博导,主要从事地震工程领域研究(E-mail:duxiuli@bjut.edu.cn). E-mail:duxiuli@bjut.edu.cn
  • 作者简介:金浏(1985-),男,江苏泗阳人,教授,博士,博导,主要从事混凝土与混凝土结构领域研究(E-mail:jinliu@bjut.edu.cn);杨旺贤(1994-),男,河南洛阳人,硕士生,主要从事混凝土结构尺寸效应方面研究(E-mail:yang_wangxian@163.com);余文轩(1993-),男,浙江临海人,硕士生,主要从事混凝土结构尺寸效应方面研究(E-mail:ywxmailbox@163.com).
  • 基金资助:
    国家重点研发计划项目(2018YFC1504302);国家自然科学基金项目(51822801)

DYNAMIC COMPRESSIVE FAILURE AND SIZE EFFECT IN LIGHTWEIGHT AGGREGATE CONCRETE BASED ON MESO-SCALE SIMULATION

JIN Liu, YANG Wang-xian, YU Wen-xuan, DU Xiu-li   

  1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2019-01-12 Revised:2019-04-04 Online:2020-03-25 Published:2019-04-29

摘要: 轻骨料混凝土由于其轻质及保温隔热性能好等优点,越来越多被应用于实际工程结构。采用细观数值模拟方法,将轻骨料混凝土看作由骨料颗粒、砂浆基质及两者间界面过渡区组成的三相复合材料,采用塑性损伤本构关系模型,考虑应变率效应的影响,建立了对应的细观随机骨料模型,研究了轻骨料混凝土在动态压缩作用下的破坏行为及尺寸效应规律。发现:随着应变率的增加,惯性效应逐渐成为主导效应,动态压缩强度的尺寸效应逐渐被削弱,达到临界应变率时,尺寸效应被完全抑制。此外,结合率效应影响机制与规律,揭示了轻骨料混凝土动态压缩强度的尺寸效应机理,建立了“静动态统一”的尺寸效应半经验-半理论公式。

关键词: 轻骨料混凝土, 动态压缩, 应变率效应, 尺寸效应, 细观模拟

Abstract: Lightweight aggregate concrete (LWAC) is utilized more and more in practical engineering structures because of the light weight and good thermal insulation performance. In this study, LWAC was regarded a three-phase composite consisting of aggregate particles, a mortar matrix and the interface transition zone. A meso-scale simulation method for modelling the dynamic failure of concrete was established. The plastic damage constitutive model coupling with the effect of strain rate was adopted to describe the mechanical properties of concrete meso-components. The compressive failure behavior and size effect of LWAC under dynamic compressive loading were studied. The simulation results indicated that with the increase in strain rate, the inertia effect became dominant, and the size effect on dynamic compressive strength was gradually weakened and suppressed. At the critical strain rate, the size effect would be completely suppressed. In addition, according to the influence mechanism of strain rate effect, the mechanism of size effect on the dynamic compressive strength of LWAC was studied. A semi-empirical and semi-theoretical "static-dynamic unified size effect law" for quantitatively describing the size effect of LWAC was subsequently established.

Key words: lightweight aggregate concrete, dynamic compression, strain rate effect, size effect, meso-scale simulation

中图分类号: 

  • TU528.2
[1] Cui H Z, Lo T Y, Memon S A, et al. Effect of lightweight aggregates on the mechanical properties and brittleness of lightweight aggregate concrete[J]. Construction and Building Materials, 2012, 35(10):149-158.
[2] Kayali O, Haque M N, Zhu B. Some characteristics of high strength fiber reinforced lightweight aggregate concrete[J]. Cement and Concrete Composites, 2003, 25(2):207-213.
[3] Agnesini M V C, João A R. Durability of polymer-modified lightweight aggregate concrete[J]. Cement and Concrete Composites, 2004, 26(4):375-380.
[4] 曹擎宇, 孙伟, 郝挺宇, 等. 不同类型混凝土弯曲强度尺寸效应[J]. 北京工业大学学报, 2013, 39(9):1311-1315. Cao Qingyu, Sun Wei, Hao Tingyu, et al. Size effect on flexural strength of various concrete[J]. Journal of Beijing University of Technology, 2013, 39(9):1311-1315. (in Chinese)
[5] Wu C H, Kan Y C, Huang C H, et al. Flexural behavior and size effect of full scale reinforced lightweight concrete beam[J]. Journal of Marine Science and Technology, 2011, 19(2):132-140.
[6] Li M, Hao H, Shi Y, et al. Specimen shape and size effects on the concrete compressive strength under static and dynamic tests[J]. Construction and Building Materials, 2018, 161:94-93.
[7] Elfahal M M, Krauthammer T. Dynamic size effect in normal-and high-strength concrete cylinders[J]. ACI Materials Journal, 2005, 102(2):77-85.
[8] Wang X, Zhang S, Wang C, et al. Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading[J]. Construction and Building Materials, 2018, 165:45-57.
[9] Jin L, Yu W X, Du X L, et al. Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates[J]. International Journal of Impact Engineering, 2019, 125:1-12.
[10] Du X L, Jin L, Ma G W. Meso-element equivalent method for the simulation of macro mechanical properties of concrete[J]. International Journal of Damage Mechanics, 2013, 22(5):617-642.
[11] Du X, Jin L, Ma G. A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members[J]. International Journal of Damage Mechanics, 2013, 22(6):878-904.
[12] Sadouki H, Wittmann F H. On the analysis of the failure process in composite materials by numerical simulation[J]. Materials Science and Engineering A, 1988, 104(6):9-20.
[13] Cusatis G, Mencarelli A, Pelessone D, et al. Lattice discrete particle model (LDPM) for failure behavior of concrete. II:Calibration and validation[J]. Cement and Concrete Composites, 2011, 33(9):891-905.
[14] Grassl P, Grégoire D, Solano L R, et al. Meso-scale modelling of the size effect on the fracture process zone of concrete[J]. International Journal of Solids and Structures, 2012, 49(13):1818-1827.
[15] Zhou X Q, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids & Structures, 2008, 45(17):4648-4661.
[16] Jin L, Xu C, Han Y, et al. Effect of end friction on the dynamic compressive mechanical behavior of concrete under medium and low strain rates[J]. Shock and Vibration, 2016, 2016:1-20.
[17] Du X, Jin L, Ma G. Numerical simulation of dynamic tensile-failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66(4):5-17.
[18] 金浏, 杜修力. 加载速率对混凝土拉伸破坏行为影响的细观数值分析[J]. 工程力学, 2015, 32(8):42-49. Jin Liu, Du Xiuli. Meso-scale numerical analysis of the effect of loading rate on the tensile failure behavior of concrete[J]. Engineering Mechanics, 2015, 32(8):42-49. (in Chinese)
[19] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[20] 王立成, 陈桂斌. 基于细观刚体弹簧元的轻骨料混凝土力学性能数值模拟[J]. 水利学报, 2008, 39(5):80-87. Wang Licheng, Chen Guibin. Mesoscopic simulation for mechanical properties of lightweight aggregate concrete by rigid body spring model[J]. Journal of Hydraulic Engineering, 2008, 39(5):80-87. (in Chinese)
[21] Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates[J]. Journal Proceedings, 1984, 81(1):73-81.
[22] Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6):425-450.
[23] Hao Y, Hao H, Li Z X. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering, 2013, 60:82-106.
[24] Zhou X Q, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17):4648-4661.
[25] Cusatis G. Strain-rate effects on concrete behavior[J]. International Journal of Impact Engineering, 2011, 38(4):162-170.
[26] Comite Euro-International D B. CEB-FIP model code 1990[S]. Trowbridge, Wiltshire, UK:Redwood Books, 1991.
[27] Bažant Z P, Caner F C, Adley M D, et al. Fracturing rate effect and creep in micro-plane model for dynamics[J]. ASCE Journal of Engineering Mechanics, 2000, 126(9):962-970.
[28] 王振宇, 丁建彤, 郭玉顺. 结构轻骨料混凝土的应力-应变全曲线[J]. 混凝土, 2005(3):39-41. Wang Zhenyu, Ding Jiantong, Guo Yushun. Stress-strain curves of structural lightweight aggregate concretes[J]. Concrete, 2005(3):39-41. (in Chinese)
[29] 黄锦波. 轻骨料混凝土和粉煤灰混凝土强度尺寸效应研究[D]. 北京:北京建筑工程学院, 2007. Huang Jinbo. Study on strength size effect of lightweight aggregate concrete and fly ash concrete[D]. Beijing:Beijing Institute of Civil Engineering and Architecture, 2007. (in Chinese)
[30] 刘传雄, 李玉龙, 吴子燕, 等. 混凝土材料的动态压缩破坏机理及本构关系[J]. 振动与冲击, 2011, 30(5):1-5. Liu Chuanxiong, Li Yulong, Wu Ziyan, et al. Failure mechanism and constitutive model of a concrete material under dynamic compressive loads[J]. Journal of Vibration and Shock, 2011, 30(5):1-5. (in Chinese)
[31] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J]. Materials Journal, 1998, 95(6):735-739.
[32] Bažant Z P, Planas J. Fracture and size effect in concrete and other quasibrittle materials[M]. Routledge:CRC Press, 1998:7-15.
[33] Weibull W. The phenomenon of rupture in solids[J]. Proceedings of Royal Sweden Institute of Engineering Research, 1939, 153:1-55.
[1] 管俊峰, 宋志锴, 姚贤华, 陈珊珊, 袁鹏, 刘泽鹏. 采用无缝试件确定混凝土岩石的断裂韧度[J]. 工程力学, 2020, 37(3): 36-45,107.
[2] 金浏, 王涛, 杜修力, 夏海. 钢筋混凝土悬臂梁剪切破坏及尺寸效应律研究[J]. 工程力学, 2020, 37(1): 53-62.
[3] 徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59.
[4] 金浏, 余文轩, 杜修力, 张帅, 李冬. 低应变率下混凝土动态拉伸破坏尺寸效应细观模拟[J]. 工程力学, 2019, 36(8): 59-69,78.
[5] 王怀亮. 钢纤维高性能轻骨料混凝土多轴强度和变形特性研究[J]. 工程力学, 2019, 36(8): 122-132.
[6] 魏慧, 吴涛, 杨雪, 刘喜. 纤维增韧轻骨料混凝土单轴受压应力-应变全曲线试验研究[J]. 工程力学, 2019, 36(7): 126-135,173.
[7] 金浏, 郝慧敏, 张仁波, 杜修力. 高温下混凝土动态压缩行为细观数值研究[J]. 工程力学, 2019, 36(6): 70-78,118.
[8] 魏慧, 吴涛, 刘洋, 刘喜. 考虑尺寸效应的深受弯构件受剪模型分析[J]. 工程力学, 2019, 36(5): 130-136.
[9] 李冬, 金浏, 杜修力, 刘晶波, 张帅, 余文轩. 考虑细观组分影响的混凝土宏观力学性能理论预测模型[J]. 工程力学, 2019, 36(5): 67-75.
[10] 金浏, 余文轩, 杜修力, 张帅, 杨旺贤, 李冬. 基于细观模拟的混凝土动态压缩强度尺寸效应研究[J]. 工程力学, 2019, 36(11): 50-61.
[11] 李伟, 于辉, 刘利刚, 苑旭冲, 董洪旺, 吴海兵. 氟金云母微晶玻璃陶瓷的动态本构关系及断裂机理研究[J]. 工程力学, 2019, 36(11): 241-247,256.
[12] 倪威康, 王万祯, 贾真, 吴晓聪. 变截面方钢管轻骨料混凝土边柱-钢箱梁折线隔板贯通节点破坏机理和承载力研究[J]. 工程力学, 2019, 36(10): 122-133.
[13] 叶艳霞, 张志银, 刘月, 张春苗. 基于弹头型屈服的轻骨料混凝土强度准则[J]. 工程力学, 2019, 36(1): 138-145.
[14] 罗威, 肖云逸, 何栋尔, 章子华. 快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验[J]. 工程力学, 2018, 35(S1): 307-312,324.
[15] 李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 刘灵灵;张 婷;孔艳平;王令刚. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学, 2009, 26(8): 184 -188 .
[3] 蔡松柏;沈蒲生;胡柏学;邓继华. 基于场一致性的2D四边形单元的共旋坐标法[J]. 工程力学, 2009, 26(12): 31 -034 .
[4] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[5] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[6] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[7] 简 斌;翁 健;金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 -211, .
[8] 富东慧;侯振德;秦庆华. 切槽对骨压电电压的影响[J]. 工程力学, 2011, 28(1): 233 -237 .
[9] 郭彦林;王永海. 两层通高区群柱面外稳定性能与设计方法研究[J]. 工程力学, 2011, 28(6): 52 -059 .
[10] 王 岚;常春清;邢永明. 胶粉改性沥青混合料弯曲蠕变试验研究[J]. 工程力学, 2011, 28(增刊I): 40 -043 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日