工程力学 ›› 2019, Vol. 36 ›› Issue (12): 247-256.doi: 10.6052/j.issn.1000-4750.2019.01.0006

• 其他工程学科 • 上一篇    下一篇

复合材料层合板多尺度交互渐进损伤分析

田志强1,2, 李彦斌1,2, 张培伟1,3, 费庆国1,2, 钱意彦1,3   

  1. 1. 东南大学空天机械动力学研究所, 江苏, 南京 211189;
    2. 东南大学机械工程学院, 江苏, 南京 211189;
    3. 东南大学工程力学系, 江苏, 南京 211189
  • 收稿日期:2019-01-03 修回日期:2019-08-27 出版日期:2019-12-25 发布日期:2019-09-29
  • 通讯作者: 费庆国(1977-),男,江苏人,教授,博士,博导,主要从事空天机械动力学研究(E-mail:qgfei@seu.edu.cn). E-mail:qgfei@seu.edu.cn
  • 作者简介:田志强(1993-),男,山西人,博士生,主要从事空天机械动力学研究(E-mail:220170263@seu.edu.cn);李彦斌(1986-),男,山西人,讲师,博士,主要从事空天机械动力学研究(E-mail:lyb@seu.edu.cn);张培伟(1980-),男,江苏人,副教授,博士,主要从事复合材料断裂研究(E-mail:zhangpeiwei@seu.edu.cn);钱意彦(1992-),男,江苏人,硕士,主要从事空天机械动力学研究(E-mail:220150897@seu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(11802059,11572086);航空科学基金项目(20171369006);江苏省自然科学基金项目(BK20170656,BK20170022)

MULTI-SCALE INTERACTIVE PROGRESSIVE DAMAGE ANALYSIS OF COMPOSITE LAMINATES

TIAN Zhi-qiang1,2, LI Yan-bin1,2, ZHANG Pei-wei1,3, FEI Qing-guo1,2, QIAN Yi-yan1,3   

  1. 1. Institute of Aerospace Machinery and Dynamics, Southeast University, Nanjing, Jiangsu 211189, China;
    2. School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu 211189, China;
    3. Department of Engineering Mechanics, Southeast University, Nanjing, Jiangsu 211189, China
  • Received:2019-01-03 Revised:2019-08-27 Online:2019-12-25 Published:2019-09-29

摘要: 纤维增强复合材料强度的准确表征是复合材料力学性能研究的核心问题之一。该文以碳纤维增强树脂基复合材料层合板为研究对象,基于宏观-细观多尺度分析方法,根据复合材料的物理失效模式分别给出了基体和纤维的细观失效准则,同时考虑基体失效对复合材料层合板纤维轴向力学性能的影响。提出了新的刚度退化方式,可准确表征复合材料层合板的损伤演化过程,开展了复合材料层合板四点弯模型的多尺度交互渐进损伤分析和试验验证。结果表明:基于多尺度方法的复合材料层合板宏-细观交互渐进损伤分析结果与试验结果吻合较好,新的刚度退化方式可以准确模拟层合板的失效过程。

关键词: 复合材料, 多尺度交互, 渐进损伤, 刚度退化, 强度

Abstract: Accurate characterization of the strength of fiber reinforced composites is one of the core issues in the study of the mechanical properties of composites. Carbon fiber reinforced composite laminates are studied in this paper. Based on the macro-mesoscopic multi-scale analysis method, the mesoscopic failure criteria of matrix and fiber are given according to the physical failure mode of the composites. The effect of matrix failure on the axial mechanical properties of the composite laminates is considered. A new stiffness degradation method is proposed to accurately characterize the damage evolution process of the composite laminates. By adopting a four-point bending model, the analysis of multi-scale interactive progressive damage and experimental verification of the composite laminates are carried out. The results show that the simulation of the macro-mesoscopic interactive progressive damage analysis based on the multi-scale method is consistent with the experimental results. The new stiffness degradation method can accurately simulate the failure process of composite laminates.

Key words: composites, multi-scale interaction, progressive damage analysis, stiffness degradation, strength

中图分类号: 

  • TB332
[1] 李彦斌, 张鹏, 吴邵庆, 等. 复合材料加筋板计及热效应的声-固耦合分析[J]. 振动工程学报, 2015, 28(4):531-540. Li Yanbin, Zhang Peng, Wu Shaoqing, et al. Structural-acoustic coupling analysis of a composite stiffened panel in a thermal environment[J]. Journal of Vibration Engineering, 2015, 28(4):531-540. (in Chinese)
[2] 吴邵庆, 范刚, 李彦斌, 等. 复合材料梁弹性参数不确定性量化及试验验证[J]. 东南大学学报(自然科学版), 2018, 48(6):1004-1012. Wu Shaoqing, Fan Gang, Li Yanbin, et al. Uncertainty quantification on elastic parameters of composite beams and its experimental verification[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(6):1004-1012. (in Chinese)
[3] 秦福溶, 姜东, 曹芝腑, 等. 基于灵敏度分析的复合材料组分参数识别方法[J]. 复合材料学报, 2018, 35(12):3350-3359. Qin Furong, Jiang Dong, Cao Zhifu, et al. Parameter identification for components of composites based on sensitivity analysis[J]. Acta Materiae Compositae Sinica, 2018, 35(12):3350-3359. (in Chinese)
[4] 陈滨琦, 曾建江, 王玉青, 等. 三向受压下单向复合材料层板破坏的细观力学分析[J]. 复合材料学报, 2017, 34(4):573-583. Chen Binqi, Zeng Jianjiang, Wang Yuqing, et al. Micro-mechanics analysis of damage for unidirectional composite laminates under tri-axial compression[J]. Acta Materiae Compositae Sinica, 2017, 34(4):573-583. (in Chinese)
[5] 杨强, 解维华, 孟松鹤, 等. 复合材料多尺度分析方法与典型元件拉伸损伤模拟[J]. 复合材料学报, 2015, 32(3):617-624. Yang Qiang, Xie Weihua, Meng Songhe, et al. Multi-scale analysis method of composites and damage simulation of typical component under tensile load[J]. Acta Materiae Compositae Sinica, 2015, 32(3):617-624. (in Chinese)
[6] 李星, 关志东, 刘璐, 等. 复合材料跨尺度失效准则及损伤演化[J]. 复合材料学报, 2013, 30(2):152-158. Li Xing, Guan Zhishan, Liu Lu, et al. Composite multiscale failure criteria and damage evolution[J]. Acta Materiae Compositae Sinica, 2013, 30(2):152-158. (in Chinese)
[7] Montesano J, Hao C, Singh C V. Development of a physics-based multi-scale progressive damage model for assessing the durability of wind turbine blades[J]. Composite Structures, 2016, 141:50-62.
[8] Hongyong Jiang, Yiru Ren, Songjun Zhang, et al. Multi-scale finite element analysis for tension and ballistic penetration damage characterizations of 2D triaxially braided composite[J]. Journal of Materials Science, 2018, 53(14):10071-10094.
[9] Tashkinov M, Ershova D. Shalimov A. Computational multi-scale analysis of simultaneous processes of delamination and damage accumulation in laminated composites[J]. Frattura e Integrita Strutturale, 2019, 49:396-411.
[10] Souza F V, Allen D H, Kim Y R. Multiscale model for predicting damage evolution in composites due to impact loading[J]. Composites Science & Technology, 2008, 68(13):2624-2634.
[11] Ha S K, Lei Xu, Chao Zhao, et al. Progressive failure prediction of short fiber reinforced composites using a multi-scale approach[J]. Journal of Composite Materials, 2018, 52(27):3785-3801.
[12] Daghia F, Ladeveze P. A micro-meso computational strategy for the prediction of the damage and failure of laminates[J]. Composite Structures, 2012, 94(12):3644-3653.
[13] Muxuan Tao, Jianguo Nie. Multi-scale modeling for deformation mechanism analysis of composite joint substructures[J]. Engineering Structures, 2016, 118:55-73.
[14] 熊波, 罗锡林, 谭惠丰. 考虑接头作用的全复合材料桁架结构多尺度分析[J]. 工程力学, 2015, 32(8):229-235. Xiong Bo, Luo Xilin, Tan Huifeng. Multi-scale analysis of all-composite truss considering joint effects[J]. Engineering Mechanics, 2015, 32(8):229-235. (in Chinese)
[15] Bo Wang, Guiqiong Jiao, Wenge Pan, et al. Tensile and compress experimental investigation of three dimensionally braided C/SiC composites[J]. Acta Materiae Compositae Sinica, 2004, 21(3):110-114.
[16] 张承承, 王建军. 基于刚度退化的复合材料结构损伤研究进展[J]. 材料导报, 2016, 30(21):8-13. Zhang Chengcheng, Wang Jianjun. Research advances in damage of composite structures on stiffness degradation[J]. Material Review, 2016, 30(21):8-13. (in Chinese)
[17] Pengfei Liu, Jinyang Zheng. Recent developments on damage modeling and finite element analysis for composite laminates:A review[J]. Materials and Design, 2010, 31(8):3825-3834.
[18] Libin Zhao, Wen Yang, Tiancheng Cao, et al. A progressive failure analysis of all-C/SiC composite multi-bolt joints[J]. Composite Structures, 2018, 202:1059-1068.
[19] Shi Y, Swait T, Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact[J]. Composite Structures, 2012, 94(9):2902-2913.
[20] 张博明, 赵琳. 基于单胞解析模型的复合材料层合板渐进损伤数值分析[J]. 工程力学, 2012, 29(4):36-42. Zhang Boming, Zhao Lin. Numerical analysis for progressive damage of composite laminates based on analytic model of unit cell[J]. Engineering Mechanics, 2012, 29(4):36-42. (in Chinese)
[21] 卓小翔, 刘辉, 楚锡华, 等.非均质材料动力分析的广义多尺度有限元法[J]. 力学学报, 2016, 48(2):378-386. Zhuo Xiaoxiang, Liu Hui, Chu Xihua, et al. A generalized multiscale finite element method for dynamic analysis of heterogeneous material[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2):378-386. (in Chinese)
[22] 于士甲, 张鹏, 李彦斌, 等. 基于动态子模型法的结构动响应预示方法[J]. 东南大学学报(自然科学版), 2017, 47(2):325-330. Yu Shijia, Zhang Peng, Li Yanbin, et al. Structural response prediction based on dynamic sub-modelling method[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(2):325-330. (in Chinese)
[23] 相超, 周丽, 宋恩鹏, 等. 拉伸载荷下贴补复合材料层合板的渐进损伤分析[J]. 工程力学, 2014, 31(10):234-241. Xiang Chao, Zhou Li, Song Enpeng, et al. Progressive damage analysis of bonding patch-repaired composite laminates under tension loading[J]. Engineering Mechanics, 2014, 31(10):234-241. (in Chinese)
[24] Park I K, Park K J, Kim S J. Rate-dependent damage model for polymeric composites under in-plane shear dynamic loading[J]. Computational Materials Science, 2015, 96:506-519.
[25] 古兴瑾, 许希武. 不同形状弹体高速冲击下复合材料层板损伤分析[J]. 工程力学, 2013, 30(1):432-440. Gu Xingjin, Xu Xiwu. Analysis of damage in composite laminates under high velocity impact by projectiles of different shapes[J]. Engineering Mechanics, 2013, 30(1):432-440. (in Chinese)
[26] 王成华, 杨阳, 康强, 等. 一种新型刚度退化模型及复合材料结构渐进损伤分析的通用方法实现[J]. 工程力学, 2016, 33(4):17-23. Wang Chenghua, Yang Yang, Kang Qiang, et al. A stiffness degradation model and a general method for progressive failure analysis of composite structures[J]. Engineering Mechanics, 2016, 33(4):17-23. (in Chinese)
[27] Yiru Ren, Songjun Zhang, Hongyong Jiang, et al. Meso-scale progressive damage behavior characterization of triaxial braided composites under quasi-stable load[J]. Applied Composite Material, 2017, 25(2):335-352.
[28] Dong Jiang, Rui Ma, Shaoqing Wu, et al Numericalexperimental method for elastic parameters identification of a composite panel[J]. Theoretical and Applied Mechanics Letters, 2014, 4(6):26-31.
[29] 陈素芳, 谭志勇, 姜东, 等. 高温环境下纤维增强复合材料等效参数预测[J]. 振动与冲击, 2018, 37(11):216-224, 258. Chen Sufang, Tan Zhiyong, Jiang Dong, et al. Equivalent parametric prediction for fiber reinforced composites under high temperature condition[J]. Journal of Vibration and Shock, 2018, 37(11):216-224, 258. (in Chinese)
[30] Sufang Chen, Qingguo Fei, Dong Jiang, et al. Determination of thermo-elastic parameters for dynamical modeling of 2.5D C/SiC braided composites[J]. Journal of Mechanical Science & Technology, 2018, 32(1):231-243.
[31] 费庆国, 姜东, 陈素芳, 等. 高温下编织复合材料热相关参数识别方法研究[J]. 力学学报, 2018, 50(3):497-507. Fei Qingguo, Jiang Dong, Chen Sufang, et al. Thermal-related parameter identification of braided composites at high temperature[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3):497-507. (in Chinese)
[1] 关少钰, 白涌滔, 刘卫辉, 李银胜, 王伟. 基于统一强度理论的高强钢管混凝土柱压弯屈服准则[J]. 工程力学, 2019, 36(S1): 170-174,183.
[2] 覃茜, 徐千军. 成层混凝土的剪切强度和Ⅱ型断裂韧度[J]. 工程力学, 2019, 36(9): 188-196.
[3] 肖志鹏, 仇翯辰, 周磊. 复合材料支撑机翼撑杆位置与结构综合优化设计[J]. 工程力学, 2019, 36(9): 213-220.
[4] 赵宪忠, 戴柳丝, 黄兆祺, 任重. 钢货架结构研究现状与关键技术[J]. 工程力学, 2019, 36(8): 1-15.
[5] 徐明雪, 梁兴文, 汪萍, 王照耀. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8): 70-78.
[6] 邢国华, 杨成雨, 常召群, 秦拥军, 张广泰. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. 工程力学, 2019, 36(8): 87-95.
[7] 王怀亮. 钢纤维高性能轻骨料混凝土多轴强度和变形特性研究[J]. 工程力学, 2019, 36(8): 122-132.
[8] 补国斌, 周靖, 王菁菁. 速度脉冲地震和结构偏心耦合效应对结构影响系数的修正[J]. 工程力学, 2019, 36(8): 217-225.
[9] 卜一之, 金通, 李俊, 张清华. 纵肋与横隔板交叉构造细节穿透型疲劳裂纹扩展特性及其加固方法研究[J]. 工程力学, 2019, 36(6): 211-218.
[10] 吕一凡, 李国强, 王彦博. 超500 MPa级高强钢承压型螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(5): 200-207,215.
[11] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[12] 黄云, 张清华, 郭亚文, 卜一之. 钢桥面板纵肋与横隔板焊接细节表面缺陷及疲劳效应研究[J]. 工程力学, 2019, 36(3): 203-213,223.
[13] 钟紫蓝, 王书锐, 杜修力, 李立云, 侯本伟. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224-230,239.
[14] 管俊峰, 谢超鹏, HU Xiaozhi, 姚贤华, 白卫峰. 基于边界效应理论确定热轧碳素钢的韧度与强度[J]. 工程力学, 2019, 36(3): 231-239.
[15] 张锐, 李宏男, 王东升, 成虎. 结构时程分析中强震记录选取研究综述[J]. 工程力学, 2019, 36(2): 1-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 鹤;谢 旭. 车辆荷载作用下大跨度斜拉桥钢和CFRP拉索的非线性振动[J]. 工程力学, 2009, 26(8): 123 -130 .
[2] 廖飞宇;韩林海. 方形钢管混凝土叠合柱的力学性能研究[J]. 工程力学, 2010, 27(4): 153 -162 .
[3] 燕乐纬;陈树辉. 一种改进的广义遗传算法及其在结构动力优化问题中的应用[J]. 工程力学, 2010, 27(5): 21 -026 .
[4] 赵兰浩;李同春;颜天佑. 虚拟裂缝模型的接触有限元法实现[J]. 工程力学, 2010, 27(5): 60 -067 .
[5] 张红梅;肖映雄. 三维弹性问题高次有限元离散线性系统的块对角逆预条件PCG法[J]. 工程力学, 2010, 27(7): 62 -066 .
[6] 肖 潇;关富玲;程 亮. 基于能量动量方法的空间薄膜结构的展开分析[J]. 工程力学, 2011, 28(4): 122 -127 .
[7] 孙巍巍;孟少平;栾文彬. 大直径混凝土筒仓温度应力研究[J]. 工程力学, 2011, 28(7): 91 -097 .
[8] 刘 宏;李庆祥. 复杂体型大跨建筑的风荷载预测与抗风设计[J]. 工程力学, 2011, 28(8): 160 -167 .
[9] 杜敬利;段宝岩;保 宏. 增强索支撑系统扭转刚度的索连接位置优化[J]. 工程力学, 2009, 26(4): 252 -256 .
[10] 王凌云;;徐幼麟. 斜拉桥斜拉索的风雨振动:参数研究[J]. 工程力学, 2009, 26(7): 147 -154 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日