工程力学 ›› 2019, Vol. 36 ›› Issue (12): 177-187.doi: 10.6052/j.issn.1000-4750.2019.01.0002

• 土木工程学科 • 上一篇    下一篇

车桥耦合下钢桥面沥青铺装层动力响应研究

李梦琪1, 张锋2, 冯德成2, 于丽梅3   

  1. 1. 辽宁省交通规划设计院有限责任公司, 辽宁, 沈阳 110166;
    2. 哈尔滨工业大学交通科学与工程学院, 黑龙江, 哈尔滨 150090;
    3. 吉林省交通科学研究所, 吉林, 长春 130012
  • 收稿日期:2019-01-16 修回日期:2019-05-15 出版日期:2019-12-25 发布日期:2019-06-06
  • 通讯作者: 张锋(1981-),男,陕西蒲城人,副教授,博士,从事道路工程研究(E-mail:zhangf@hit.edu.cn). E-mail:zhangf@hit.edu.cn
  • 作者简介:李梦琪(1993-),女,辽宁沈阳人,硕士,从事道路工程研究(E-mail:342572952@qq.com);冯德成(1968-),男,河南信阳人,教授,博士,中国公路学会理事,从事道路工程研究(E-mail:fengdecheng@hit.edu.cn);于丽梅(1980-),女,辽宁朝阳人,高工,硕士,从事道路工程研究(E-mail:48657530@qq.com).
  • 基金资助:
    国家自然科学基金项目(51578200);吉林省交通运输科技项目(2016-2-4)

DYNAMIC RESPONSE OF STEEL DECK ASPHALT PAVEMENT CONSIDERING VEHICLE-BRIDGE COUPLING EFFECT

LI Meng-qi1, ZHANG Feng2, FENG De-cheng2, YU Li-mei3   

  1. 1. Liaoning Provincial Transportation Planning and Design Institute Co., Ltd., Liaoning, Shenyang 110166, China;
    2. School of Transportation Science and Engineering, Harbin Institute of Technology, Heilongjiang, Harbin 150090, China;
    3. Jilin Provincial Transport Scientific Research Institute, Jilin, Changchun 130012, China
  • Received:2019-01-16 Revised:2019-05-15 Online:2019-12-25 Published:2019-06-06

摘要: 为了研究钢桥面沥青铺装层的动力响应,将车辆车体看成刚体并以匀速进行运动,车辆悬架与车轮均视为由弹簧和阻尼器所组成,将桥面沥青铺装层和钢板视为双层连续粘弹性薄板,并以铺装层表面不平度作为系统的附加激励,车辆和桥面铺装层间采用点接触模型,最终建立车辆-沥青铺装层-钢桥耦合动力学模型,进而采用Wilson-θ法求解系统方程组。在此基础上,应用Fortran语言实现模型的计算,并结合现场测试结果验证程序的准确性和可靠性。研究结果表明:对于钢桥面沥青铺装层,移动车辆产生的动力效应显著,随着后轴轴重的增加,铺装层表面应变幅值和铺装层与钢板间的最大剪应力呈线性增加;随着行车速度增加,铺装层表面应变幅值和铺装层与钢板间的最大剪应力上下波动变化,但两者均在60 km/h的行车速度下数值达到最大;桥梁跨径和桥面宽度对铺装层表面应变幅值和铺装层与钢板间最大剪应力的影响较为显著,桥梁跨径的影响尤为明显。

关键词: 道路工程, 沥青铺装层, 钢桥, 车桥耦合, 动力响应

Abstract: In order to study the dynamic response of asphalt pavement of steel deck, a dynamics model with vehicle-bridge deck asphalt pavement -steel bridge coupling effect is established. In the model, the vehicle body is regarded as a rigid body moving with a constant speed, and the vehicle suspension and wheels are composed of springs and damping devices. The asphalt pavement of bridge deck and steel plate are treated as double-layer continuous viscoelastic sheet. The unevenness of the pavement surface is the source of additional excitation, and the point contact model is used to connect the asphalt pavement and the vehicle. Wilson-θ method is used to solve the system equations. On this basis, the corresponding calculation program is developed with Fortran language. The reliability and accuracy of the program are verified according to the measured data. The results show that the dynamic effects of the moving vehicle are remarkable. With the increase of rear axis loads, the peak strain of pavement surface and the maximum shear stress between bridge deck pavement and steel plate display a linear increase. With the increase of moving speed, the peak strain of pavement surface and the maximum shear stress between bridge deck pavement and steel plate fluctuate within a range, but both of them reach the maximum values at 60 km/h speed. Bridge span and bridge width show a significant effect on the peak strain of pavement surface and the maximum shear stress between bridge deck pavement and steel plate, especially the bridge span.

Key words: highway engineering, asphalt pavement of bridge deck, steel bridge, vehicle-bridge coupling, dynamic response

中图分类号: 

  • U416.2
[1] Liu X, Zhou C, Feng D, et al. Experimental study on interlayer shear properties of ERS pavement system for long-span steel bridges[J]. Construction & Building Materials, 2017, 143:198-209.
[2] Wrottesley, Robert Willis, Henry James, et al. Report of the commissioners appointed to inquire into the application of iron to railway structures[J]. Civil Engineering, 1849, 19(5):289-302.
[3] Kriloff A. Über die erzwungenen Schwingungen von gleichförmigen elastischen Stäben[J]. Mathematische Annalen, 1905, 61(2):211-234.
[4] Timoshenko S P. On the forced vibrations of bridges[J]. Philosophical Magazine, 1922, 43(257):1018-1019.
[5] John M. Biggs Introduction to structural dynamics[M]. New York:McGraw-Hill, 1964:315-323
[6] 项海帆, 毛清华. 车辆荷载作用下简支梁桥振动的研究[J]. 同济大学学报, 1989, 17(4):457-465. Xiang Haifan, Mao Qinghua. Research on simply supported beam bridge vibration due to vehicular loads[J]. Journal of Tongji University, 1989, 17(4):457-465. (in Chinese)
[7] Li J Q, Leng X L, Fang T. Evolutionary random response problem of a coupled vehicle-bridge system[J]. Archive of Applied Mechanics, 2002, 72(6/7):536-544.
[8] 徐勋倩. 车-钢桥面铺装耦合振动系统动力效应分析[J]. 应用力学学报, 2009, 26(3):501-506. Xu Xunqian. Dynamic analysis of coupled vibration system for vehicle and steel bridge deck surfacing[J]. Chinese Journal of Applied Mechanics, 2009, 26(3):501-506. (in Chinese)
[9] Deng L, Cai C S. Development of dynamic impact factor for performance evaluation of existing multi-girder concrete bridges[J]. Engineering Structures, 2010, 32(1):21-31.
[10] Liu X, Medani T O, Scarpas A, et al. Characterization of surfacing materials for orthotropic steel deck bridges. Part 2:Numerical work[J]. International Journal of Pavement Engineering, 2010, 11(3):255-265.
[11] 蔡军哲, 何伟, 边陇超, 等. 车-桥耦合振动的动力响应分析[J]. 大连交通大学学报, 2015, 36(4):22-26. Cai Junzhe, He Wei, Bian Longchao, et al. Dynamic response study of vehicle-bridge coupling vibration[J]. Journal of Dalian Jiaotong University, 2015, 36(4):22-26. (in Chinese)
[12] Rezaiguia A, Ouelaa N, Laefer D F, et al. Dynamic amplification of a multi-span, continuous orthotropic bridge deck under vehicular movement[J]. Engineering Structures, 2015, 100:718-730.
[13] Gao Q, Wang Z, Liu C, et al. Dynamic responses of a three-span continuous girder bridge with variable cross-section based on vehicle-bridge coupled vibration analysis[J]. Ies Journal Part A Civil & Structural Engineering, 2015, 8(2):121-130.
[14] Yang Y B, Chang C H, Yau J D. An element for analyzing vehicle-bridge systems considering vehicle's pitching effect[J]. International Journal for Numerical Methods in Engineering, 2015, 46(7):1031-1047.
[15] İsmail Esen. Analysis of vehicle bridge dynamic interaction using quarter car model[C]//1st International Conference on Engineering Technology and Applied Sciences. Turkey:Afyon Kocatepe University, 2016.
[16] 谭子翼, 唐雪松, 盛国刚. 车桥耦合系统的非线性动力响应分析[J]. 长沙理工大学学报(自然科学版), 2016, 13(1):49-55. Tan Ziyi, Tang Xuesong, Sheng Guogang. Analysis of the nonlinear dynamic behavior of the bridge under moving load system[J]. Journal of Changsha University of Science & Technology, 2016, 3(1):49-55. (in Chinese)
[17] Zhou S, Song G, Ren Z, et al. Nonlinear dynamic analysis for coupled vehicle-bridge system with harmonic excitation[J]. Meccanica, 2017, 52(9):2219-2243.
[18] 经薇, 李松, 李强, 等. 多车车桥耦合振动特性研究[J]. 科学技术与工程, 2017, 17(6):111-116. Jing Wei, Li Song, Li Qiang et al. The characteristics of multi-vehicle bridge coupling systems research[J]. Science Technology & Engineering, 2017, 17(6):111-116. (in Chinese)
[19] 李慧乐, 夏禾. 基于车桥耦合随机振动分析的钢桥疲劳可靠度评估[J]. 工程力学, 2017(2):75-83. Li Huile, Xia He. Fatigue reliability evaluation of steel bridges based on coupling random vibration analysis of train and bridge[J]. Engineering Mechanics, 2017(2):75-83. (in Chinese)
[20] 谢伟平, 刘亨. 城市轨道交通"公轨合一"型高架桥车桥耦合振动分析[J]. 工程力学, 2016, 33(2):119-126. Xie Weiping, Liu Heng. Vehicle-bridge interaction analysis of a super bridge in urban railway system[J]. Engineering Mechanics, 2016, 33(2):119-126. (in Chinese)
[21] 李岩, 吴志文, 蔡明, 等. 一种随机车流与桥梁耦合振动的分析方法[J]. 哈尔滨工业大学学报, 2018, 50(3):46-52. Li Yan, Wu Zhiwen, Cai Ming, et al. An analysis method for coupled vibration random traffic flow and bridge[J]. Journal of Harbin Institute of Technology, 2018, 50(3):46-52. (in Chinese)
[22] 李梦琪. 基于车桥耦合振动效应的钢桥面沥青铺装层轴载换算方法[D]. 哈尔滨:哈尔滨工业大学, 2018:16-28. LI Mengqi. Axle load conversion method for steel deck asphalt pavement based on coupling vibration effect of vehicle-bridge[D]. Harbin:Harbin Institute of Technology, 2018:16-28. (in Chinese)
[23] 张锋, 冯德成, 凌贤长, 等. 重载汽车-路面-路基垂向耦合动力学模型[J]. 中国公路学报, 2015, 28(4):1-12. Zhang Feng, Feng Decheng, Ling Xianzhang, et al. Vertical coupling dynamics model of heavy truck-pavement-subgrade[J]. China Journal of Highway & Transport, 2015, 28(4):1-12. (in Chinese)
[24] 曹志远. 板壳振动理论[M]. 北京:中国铁道出版社, 1989:13-59. Cao Zhiyuan. Vibration theory of plate and shell[M]. Beijing:China Railway Press, 1989:13-59. (in Chinese)
[25] GB/T 7031-2005, 机械振动道路路面谱测量数据报告[S]. 2005. GB/T 7031-2005, Mechanical vibration-road surface profiles-reporting of measured data[S]. 2005. (in Chinese)
[26] 刘献栋, 邓志党, 高峰. 公路路面不平度的数值模拟方法研究[J]. 北京航空航天大学学报, 2003, 29(9):843-846. Liu Xiandong, Deng Zhidang, Gao Feng. Research on the method of simulating road roughness numerically[J]. Journal of Beijing University of Aeronautics & Astronautics, 2003, 29(9):843-846. (in Chinese)
[27] 刘秀. 寒区沥青混凝土铺装体系力学分析与试验研究[D]. 哈尔滨:哈尔滨工业大学, 2016:125-131. Liu Xiu. Mechanical analysis and experimental study on asphalt pavement system on steel bridges in cold region[D]. Harbin:Harbin Institute of Technology, 2016:125-131. (in Chinese)
[1] 苏庆田, 王思哲, 薛智波, 张春雷, 王倩, 陈亮. 卸载程度对钢桁梁桥主桁构件加固效果的影响[J]. 工程力学, 2019, 36(S1): 92-97,105.
[2] 杨雅斌, 石广玉. 正交异性钢桥面板肋-面板焊缝疲劳验算的应力分析模型评估[J]. 工程力学, 2019, 36(S1): 98-105.
[3] 卜一之, 金通, 李俊, 张清华. 纵肋与横隔板交叉构造细节穿透型疲劳裂纹扩展特性及其加固方法研究[J]. 工程力学, 2019, 36(6): 211-218.
[4] 杜永峰, 时晨. 多向动力耦合激励下隔震结构连续倒塌性能分析[J]. 工程力学, 2019, 36(6): 248-256.
[5] 郑文智, 王浩, 沈惠军. 强震下隔震连续梁桥地震响应的温度效应研究[J]. 工程力学, 2019, 36(4): 188-195,205.
[6] 朱志辉, 张磊, 龚威, 罗思慧, 姚京川, 余志武. 基于模态叠加法和直接刚度法的列车-轨道-桥梁耦合系统高效动力分析混合算法[J]. 工程力学, 2019, 36(4): 196-205.
[7] 黄云, 张清华, 郭亚文, 卜一之. 钢桥面板纵肋与横隔板焊接细节表面缺陷及疲劳效应研究[J]. 工程力学, 2019, 36(3): 203-213,223.
[8] 施洲, 张勇, 杨仕力, 蒲黔辉. 铁路正交异性桥面加劲肋-横隔板局部疲劳受力特性研究[J]. 工程力学, 2019, 36(2): 124-133.
[9] 岳雷, 王慧, 杜豫川, 姚红云. 基于安全性分析的山区公路弯坡组合路段设计指标研究[J]. 工程力学, 2019, 36(11): 158-167.
[10] 喻莹, 刘飞鸿, 王钦华, 罗尧治, 李洋. 有限质点法阻尼构造问题的研究[J]. 工程力学, 2019, 36(11): 34-40.
[11] 邹佑学, 王睿, 张建民. 碎石桩加固可液化场地数值模拟与分析[J]. 工程力学, 2019, 36(10): 152-163.
[12] 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138-143,171.
[13] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18-23.
[14] 王丽娟, 胡昌斌. 设沥青夹层水泥混凝土路面早龄期力学行为与作用效应研究[J]. 工程力学, 2018, 35(2): 105-115.
[15] 李焱, 唐友刚, 朱强, 曲晓奇, 刘利琴. 考虑系缆拉伸-弯曲-扭转变形的浮式风力机动力响应研究[J]. 工程力学, 2018, 35(12): 229-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[4] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[5] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[6] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[7] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[8] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[9] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
[10] 李元齐;田村幸雄;沈祖炎. 单层网壳结构等效静风荷载分布估计[J]. 工程力学, 2006, 23(1): 57 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日