工程力学 ›› 2019, Vol. 36 ›› Issue (12): 165-176.doi: 10.6052/j.issn.1000-4750.2018.12.0729

• 土木工程学科 • 上一篇    下一篇

带翼缘剪力墙截面曲率分析及延性的计算

王斌1,2, 史庆轩1,2, 蔡文哲2   

  1. 1. 省部共建西部绿色建筑国家重点实验室/西安建筑科技大学, 陕西, 西安 710055;
    2. 西安建筑科技大学土木工程学院, 陕西, 西安 710055
  • 收稿日期:2019-01-07 修回日期:2019-04-09 出版日期:2019-12-25 发布日期:2019-04-29
  • 通讯作者: 蔡文哲(1990-),女,河南禹州人,博士生,从事钢与混凝土组合结构及抗震研究(E-mail:caiwenzhe000@163.com). E-mail:caiwenzhe000@163.com
  • 作者简介:王斌(1988-),男,陕西西安人,师资博士后,博士,从事混凝土结构及抗震研究(E-mail:wangbin@xauat.edu.cn).史庆轩(1963-),男,山东-城人,教授,博士,博导,从事高层建筑结构及抗震研究(E-mail:shiqx@xauat.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51808435);中国博士后科学基金面上项目(2018M643594);陕西省自然科学基础研究计划项目(2019JQ199);校人才科技基金项目(RC1811)

CURVATURE ANALYSIS AND DUCTILITY CALCULATION OF FLANGED SHEAR WALLS

WANG Bin1,2, SHI Qing-xuan1,2, CAI Wen-zhe2   

  1. 1. State Key Laboratory of Green Building in Western China, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China;
    2. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
  • Received:2019-01-07 Revised:2019-04-09 Online:2019-12-25 Published:2019-04-29

摘要: 通过对非对称截面带翼缘剪力墙的弯矩-曲率分析,分别计算了翼缘受拉和翼缘受压方向的截面屈服曲率和极限曲率,分析了轴压比、纵筋配筋率、腹板竖向分布钢筋配筋率、翼缘宽度与腹板高度比、混凝土强度、配箍特征值、腹板截面高厚比对截面曲率的影响,并结合受压区高度的变化详细阐述了截面曲率随各影响因素的变化规律。通过对4941个工况下计算结果的回归分析,建立了带翼缘剪力墙截面屈服曲率和极限曲率的简化计算公式,并进一步推导了曲率延性和位移延性的计算公式。通过与试验结果的比对,验证了计算公式的准确性。该文公式不仅将翼缘受拉和翼缘受压状态进行了区分,并择取了影响截面曲率的关键因素,可为带翼缘剪力墙的变形能力计算以及基于位移的抗震设计提供依据。

关键词: 带翼缘剪力墙, 弯矩-曲率分析, 屈服曲率, 极限曲率, 延性, 简化计算

Abstract: Based on the moment-curvature analysis of flanged shear walls with asymmetric cross-sections, the sectional yield curvature and ultimate curvature when the flange is in tension and in compression are calculated. By analyzing the influence of the axial compression ratio, longitudinal reinforcement ratio, web distributed vertical reinforcement ratio, flange width to web height ratio, concrete strength, stirrup characteristic value and web height to thickness ratio on the sectional curvatures, the variation of sectional curvatures with each influential factor is elaborated in detail combined with the change in the depth of the compressive zone. Through a regression analysis of the calculation results under 4941 conditions, simplified formulas for calculating the yield curvature and ultimate curvature of flanged shear walls are established. Formulas for estimating the curvature ductility and displacement ductility are also derived. The accuracy of the calculation formulas is verified by the comparison with the experimental results. The proposed formulas not only distinguish the cases with the flange in tension and the cases with the flange in compression, but also consider the effects of key factors affecting the sectional curvatures. They provide references for the deformation capacity calculation and the displacement-based seismic design of flanged shear walls.

Key words: shear walls with flanges, moment-curvature analysis, yield curvature, ultimate curvature, ductility, simplified calculation

中图分类号: 

  • TU398+.2
[1] 徐明雪, 梁兴文, 于婧, 等. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1):146-154, 164. Xu Mingxue, Liang Xingwen, Yu Jing, et al. Theoretical and experimental investigation on immediate stiffness of UHPC beams[J]. Engineering Mechanics, 2019, 36(1):146-154, 164. (in Chinese)
[2] 李义柱, 曹双寅, 许鹏杰, 等. 600 MPa级钢筋混凝土柱抗震性能试验研究[J]. 工程力学, 2018, 35(11):181-189. Li Yizhu, Cao Shuangyin, Xu Pengjie, et al. Experimental study on aseismic behavior of reinforced concrete columns with grade 600 MPa steel bars[J]. Engineering Mechanics, 2018, 35(11):181-189. (in Chinese)
[3] Priestley M J N, Kowalsky M J. Aspects of drift and ductility capacity of rectangular cantilever structural walls[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1998, 31(2):73-85.
[4] Paulay T. An estimation of displacement limits for ductile systems[J]. Earthquake Engineering and Structural Dynamics, 2002, 3l(10):583-599.
[5] Tjen N T, Mark A A, John W W. Yield displacement estimates for displacement-based seismic design of ductile reinforced concrete structural wall buildings[C]. 13th World Conference on Earthquake Engineering, Vancouver B C, Canada, 2004:1-15.
[6] 赵花静, 梁兴文, 宋璨. 高强混凝土剪力墙屈服位移计算方法[J]. 土木建筑与环境工程, 2014, 36(3):80-85. Zhao Huajing, Liang Xingwen, Song Can. Yield displacement calculation method of high-strength concrete shear wall[J]. Journal of Civil, Architectural & Environmental Engineering, 2014, 36(3):80-85. (in Chinese)
[7] Massone L M, Alfaro J I. Displacement and curvature estimation for the design of reinforced concrete slender walls[J]. Structural Design of Tall and Special Buildings, 2016, 25(16):823-841.
[8] 钱稼茹, 吕文, 方鄂华. 基于位移延性的剪力墙抗震设计[J]. 建筑结构学报, 1999, 20(3):42-48. Qian Jiaru, Lü Wen, Fang Ehua. Displacement ductility-based aseismic design for shear walls[J]. Journal of Building Structures, 1999, 20(3):42-48. (in Chinese)
[9] Hu H S, Nie J G, Eatherton M R. Deformation capacity of concrete-filled steel plate composite shear walls[J]. Journal of Constructional Steel Research, 2014, 103(1):148-158.
[10] 张松, 吕新林, 章红梅. 钢筋混凝土剪力墙构件极限位移的计算方法及试验研究[J]. 土木工程学报, 2009, 42(4):10-16. Zhang Song, Lü Xilin, Zhang Hongmei. Experimental and analytical studies on the ultimate displacement of RC shear walls[J]. China Civil Engineering Journal, 2009, 42(4):10-16. (in Chinese)
[11] 史庆轩, 王斌, 何伟锋, 等. 带翼缘钢筋混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2017, 38(1):106-115. Shi Qingxuan, Wang Bin, He Weifeng, et al. Experimental research on seismic behavior of reinforced concrete shear walls with flange[J]. Journal of Building Structures, 2017, 38(1):106-115. (in Chinese)
[12] Smyrou E, Sullivan T, Priestley N, et al. Sectional response of T-shaped RC walls[J]. Bulletin of Earthquake Engineering, 2013, 11(4):999-1019.
[13] Sheikh M N, Tsang H H, Lam A. Estimation of yield curvature for direct displacement-based seismic design of RC columns[C]. Australian Earthquake Engineering Conference, Victoria, Australia, 2008:1-12.
[14] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structure Engineering, 1988, 114(8):1804-1826.
[15] 田建勃, 史庆轩, 刘云贺, 等. PRC连梁-混合联肢剪力墙抗震性能分析[J]. 工程力学, 2018, 35(11):53-67. Tian Jianbo, Shi Qingxuan, Liu Yunhe, et al. Research on aseismic performance of PRC coupling beam-hybrid coupled shear wall system[J]. Engineering Mechanics, 2018, 35(11):53-67. (in Chinese)
[16] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:Architecture Industry Press, 2010. (in Chinese)
[17] Brueggen B L. Performance of T-shaped reinforced concrete structural walls under multi-directional loading[D]. America:University Of Minnesota, 2009.
[18] Thomsen J H, Wallace J W. Displacement-Based design of slender reinforced concrete structural walls-experimental verification[J]. Journal of Structure Engineering, 2004, 130(4):618-630.
[19] 曹祖同, 陈云霞, 王玲勇, 等. 钢筋陶粒砼压弯构件强度、延性和滞回性能的研究[J]. 建筑结构学报, 1998, 9(6):2-16. Cao Zutong, Chen Yunxia, Wang Lingyong, et al. Study on strength, ductility and hysteretic behavior of reinforced ceramsite concrete members subjected to axial load and flexural[J]. Journal of Building Structures, 1998, 9(6):2-16. (in Chinese)
[20] Park R, Paulay T. Reinforced concrete structures[M]. America:John Wiley & Sons, 1995.
[1] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[2] 补国斌, 周靖, 王菁菁. 速度脉冲地震和结构偏心耦合效应对结构影响系数的修正[J]. 工程力学, 2019, 36(8): 217-225.
[3] 赵必大, 蔡扬政, 王伟. 支主管夹角对X形圆钢管节点平面外受弯性能影响[J]. 工程力学, 2019, 36(7): 99-108.
[4] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[5] 邓明科, 李彤, 樊鑫淼. 高延性混凝土加固砖柱轴压性能试验研究[J]. 工程力学, 2019, 36(5): 92-99.
[6] 王俊杰, 王伟. 考虑罗德角参数的钢材薄板延性断裂标定方法[J]. 工程力学, 2019, 36(5): 37-43.
[7] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[8] 张倩婧, 张磊, 童根树. 新型带竖向缝隙的矩形钢管排柱剪力墙及其抗侧性能[J]. 工程力学, 2019, 36(12): 153-164.
[9] 邓明科, 李睿喆, 张阳玺, 闵秀明. 高延性混凝土偏心受压柱正截面受力性能试验研究[J]. 工程力学, 2019, 36(11): 62-71.
[10] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[11] 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8): 130-137.
[12] 薛伟辰, 李亚, 蔡磊, 胡翔. 双面叠合混凝土剪力墙平面内和平面外抗震性能研究[J]. 工程力学, 2018, 35(5): 47-53,142.
[13] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3): 159-166.
[14] 代洁, 邓明科, 陈佳莉. 基于材料延性的高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2018, 35(2): 124-132.
[15] 吴涛, 魏慧, 刘喜, 刘全威. 箍筋约束高强轻骨料混凝土柱轴压性能试验研究[J]. 工程力学, 2018, 35(2): 203-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[2] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[3] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[4] 陈誉;刘飞飞. 正对称Pratt 桁架直腹杆受压大偏心N型圆钢管节点静力性能实验研究[J]. 工程力学, 2011, 28(11): 170 -177 .
[5] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[6] 王小兵;刘扬;崔海清;韩洪升. 螺旋流抑制杆管偏磨的PIV实验研究[J]. 工程力学, 2011, 28(11): 225 -230 .
[7] 郜新军;赵成刚;刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J]. 工程力学, 2011, 28(11): 237 -243 .
[8] 吕伟荣;王猛;刘锡军. 灌芯混凝土砌块砌体破坏准则研究[J]. 工程力学, 2011, 28(11): 251 -256 .
[9] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[10] 张嘎;张建民. 土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J]. 工程力学, 2006, 23(2): 72 -77 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日