工程力学 ›› 2019, Vol. 36 ›› Issue (12): 153-164.doi: 10.6052/j.issn.1000-4750.2018.12.0727

• 土木工程学科 • 上一篇    下一篇

新型带竖向缝隙的矩形钢管排柱剪力墙及其抗侧性能

张倩婧, 张磊, 童根树   

  1. 浙江大学土木工程系, 杭州, 310058
  • 收稿日期:2019-01-08 修回日期:2019-06-10 出版日期:2019-12-25 发布日期:2019-06-14
  • 通讯作者: 张磊(1978-),男,浙江人,副教授,博士,博导,主要从事钢结构研究(E-mail:celzhang@zju.edu.cn). E-mail:celzhang@zju.edu.cn
  • 作者简介:张倩婧(1994-),女,浙江人,博士生,主要从事钢结构研究(E-mail:zqj2014qstmz@mails.163.com);童根树(1963-),男,浙江人,教授,博士,博导,主要从事钢结构研究(E-mail:tonggs@zju.edu.cn).
  • 基金资助:
    中央高校基本科研业务费项目(2017FZA4020)

A NOVEL STEEL-TUBE SHEAR WALL WITH SLITS AND ITS LATERAL-LOAD-RESISTANT BEHAVIOR

ZHANG Qian-jing, ZHANG Lei, TONG Gen-shu   

  1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
  • Received:2019-01-08 Revised:2019-06-10 Online:2019-12-25 Published:2019-06-14

摘要: 针对传统薄钢板剪力墙以及带竖缝钢板剪力墙存在的问题,提出了一种新型带竖向缝隙的矩形钢管排柱剪力墙。基于机构控制法,设计了新型剪力墙的典型算例,并进行了弹性屈曲、弹塑性抗侧和滞回性能分析。结果表明:新型剪力墙的一阶弹性屈曲均为钢管壁的局部屈曲,且临界荷载远大于弹塑性极限承载力;新型剪力墙具有优异的弹塑性抗侧性能,延性系数可达20以上;弹塑性滞回性能曲线饱满,耗能能力佳。在此基础上,提出了新型剪力墙的弹性抗侧刚度、屈服荷载和极限抗侧承载力等关键性能参数的计算方法,同时对截面宽厚比、连接焊缝的高度等构造措施提出了要求。

关键词: 钢板剪力墙, 钢管排柱剪力墙, 竖缝剪力墙, 抗侧性能, 延性

Abstract: To overcome the deficiencies of traditional thin plate steel shear walls and steel-plate shear walls with slits, the present study proposed a steel-tube shear wall with slits (SSWS), a novel wall that is composed of a row of rectangular steel tubes with slits in between. The study first introduced the mechanisms of a SSWS in lateral load resistant behavior, based on which typical SSWS specimens for numerical analysis were designed. Subsequently, finite element analyses were performed on these typical specimens subject to lateral loads. The results show that the elastic buckling of a SSWS was always controlled by the local buckling of the steel tube section. The nonlinear analyses concerning both the geometric and material nonlinearities indicate that a SSWS is very ductile at the inelastic stage with the ductility coefficient being greater than 20 for some of these specimens. Good energy dissipation of the SSWS was also found in the cyclic loading analysis. Based on these analyses, simple solutions to the elastic stiffness, the yield load and the ultimate load for a SSWS in shear were proposed. The requirements for the section of steel tubes and connections between adjacent steel tubes to ensure good shear performance of a SSWS were also discussed.

Key words: steel shear wall, steel-tube shear wall, plate shear wall with slits, lateral-load-resistance, ductility

中图分类号: 

  • TU391
[1] 张磊, 童根树. 一种带竖向缝隙矩形钢管排剪力墙结构[P]. 中国:ZL201621490205.3, 2017. Zhang Lei, Tong Genshu. Steel-tube shear wall with slits[P]. China:ZL201621490205.3, 2017. (in Chinese)
[2] 郭彦林, 周明. 钢板剪力墙的分类及性能[J]. 建筑科学与工程学报, 2009, 26(3):1-13. Guo Yanlin, Zhou Ming. Categorization and performance of steel plate shear wall[J]. Journal of Architecture and Civil Engineering, 2009, 26(3):1-13. (in Chinese)
[3] Design guide 20:Steel plate shear walls[S]. Chicago, IL, USA:American Institute of Steel Construction, 2007.
[4] 陈国栋, 郭彦林, 范珍, 等. 钢板剪力墙低周反复荷载试验研究[J]. 建筑结构学报, 2004, 25(2):19-26. Chen Guodong, Guo Yanlin, Fan Zhen, et al. Cyclic test of steel plate shear walls[J]. Journal of Building Structures, 2004, 25(2):19-26. (in Chinese)
[5] CAN/CSA S16-01, limit states design of steel structures[S]. Willowdale, Ontario, Canada:Canadian Standards Association, 2001.
[6] FEMA 450, NEHRP recommended provisions for seismic regulations for new buildings and other structures[S]. Washington, DC:Building Seismic Safety Council for the Federal Emergency Management Agency, 2004.
[7] JGJ 99-2015, 高层民用建筑钢结构技术规程[S]. 中国:中国建筑工业出版社, 2015. JGJ 99-2015, Technical specification for steel structure of tall building[S]. China:China Architecture & Building Press, 2015. (in Chinese)
[8] 蒋路, 陈以一, 卞宗舒. 足尺带缝钢板剪力墙低周往复加载试验研究II[J]. 建筑结构学报, 2009, 30(5):65-71. Jiang Lu, Chen Yiyi, Bian Zongshu. Experimental study on full scale steel plate shear wall with slits under low-frequency cyclic loads:Part II[J]. Journal of Building Structures, 2009, 30(5):65-71. (in Chinese)
[9] 陈以一, 蒋路. 带缝钢板剪力墙的承载力和开缝参数研究[J]. 建筑科学与工程学报, 2010, 27(3):109-114. Chen Yiyi, Jiang Lu. Research on bearing capacity and slit parameters of steel plate shear wall with slits[J]. Journal of Architecture and Civil Engineering, 2010, 27(3):109-114. (in Chinese)
[10] 蒋路. 带缝钢板剪力墙试验报告[R]. 上海:同济大学, 2008. Jiang Lu. Experiment report on steel plate shear wall with slits[R]. Shanghai:Tongji University, 2008. (in Chinese)
[11] He L S, Togo T, Hayashi K, et al. Cyclic behavior of multirow slit shear walls made from low-yield-point steel[J]. Journal of Structural Engineering, 2016, 142(11):1-9.
[12] Gortes G, Liu J. Experimental evaluation of steel slit panel-frames for seismic resistance[J]. Journal of Constructional Steel Research, 2011, 67(2):181-191.
[13] Hitaka T, Matsui C. Experimental study on steel shear wall with slits[J]. Journal of Structural Engineering, 2003, 129(5):586-595.
[14] GB 50017-2017, 钢结构设计规范[S]. 中国:中国建筑工业出版社, 2017. GB 50017-2017, Standard for design of steel structures[S]. China:China Architecture & Building Press, 2017. (in Chinese)
[15] JGJ 101-2015, 建筑试验抗震规程[S]. 中国:中国建筑工业出版社, 2015. JGJ 101-2015, Specification for seismic test of buildings[S]. China:China Architecture & Building Press, 2015. (in Chinese)
[16] 陈以一, 宁燕琪, 蒋路. 框架-带缝钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2012, 33(7):133-139. Chen Yiyi, Ning Yanqi, Jiang Lu. Experimental study on seismic behavior of frame-steel plate shear wall with slits[J]. Journal of Building Structures, 2012, 33(7):133-139. (in Chinese)
[17] 曹正罡, 杜鹏, 邱星玮, 等. 三类薄钢板剪力墙滞回性能及选型[J]. 哈尔滨工业大学学报, 2014, 46(10):10-16. Cao Zhenggang, Du Peng, Qiu Xingwei, et al. Hysteretic performance study and lectotype suggestion for three types of thin steel plate shear walls[J]. Journal of Harbin Institute of Technology, 2014, 46(10):10-16. (in Chinese)
[18] 王先铁, 刘立达, 杨航东, 等. 方钢管混凝土框架内置两侧开洞薄钢板剪力墙的抗震性能研究[J]. 工程力学, 2017, 34(3):162-172. Wang Xiantie, Liu Lida, Yang Hangdong, et al Seismic study of concrete-filled square steel tubular framethin steel plate shear walls with two-side openings[J]. Engineering Mechanics, 2017, 34(3):162-172. (in Chinese)
[19] 蒋路, 陈以一, 汪文辉, 等. 足尺带缝钢板剪力墙低周往复加载试验研究I[J]. 建筑结构学报, 2009, 30(5):57-64. Jiang Lu, Chen Yiyi, Wang Wenhui, et al. Experimental study on full scale steel plate shear wall with slits under low-frequency cyclic loads:Part I[J]. Journal of Building Structures, 2009, 30(5):57-64. (in Chinese)
[20] 李峰. 钢板剪力墙抗震性能的试验与理论研究[D]. 西安:西安建筑科技大学, 2011. Li Feng. Experimental and theoretical investigation to earthquake resistant behavior of steel plate shear walls[D]. Xi'an:Xi'an University of Architecture and Technology, 2011. (in Chinese)
[21] 李峰, 李慧, 李振敏, 等. 交叉加劲肋钢板剪力墙低周反复荷载试验研究[J]. 西安建筑科技大学学报(自然科学版), 2009, 41(1):57-62. Li Feng, Li Hui, Li Zhenmin, et al. Experimental study on diagonally stiffened steel plate shear wall under low-frequency cyclic loads[J]. Journal Xi'an University of Architecture and Technology (Natural Science Edition), 2009, 41(1):57-62. (in Chinese)
[22] 李慎. 开缝钢板剪力墙简化模型的性能研究[D]. 西安:西安建筑科技大学, 2012. Li Shen. The study on behavior of simplified model of steel plate shear wall with slits[D]. Xi'an:Xi'an University of Architecture and Technology, 2012. (in Chinese)
[23] 缪友武. 两侧开缝钢板剪力墙结构性能研究[D]. 北京:清华大学, 2004. Miao Youwu. The investigation to structural behavior of steel plate shear wall slotted at two edges[D]. Beijing:Tsinghua University, 2004. (in Chinese)
[24] 郭彦林, 缪友武, 董全利. 全加劲两侧开缝钢板剪力墙弹性屈曲研究[J]. 建筑钢结构进展, 2007, 9(3):58-62. Guo Yanlin, Miao Youwu, Dong Quanli. Elastic buckling of stiffened steel plate shear walls slotted at two edges[J]. Progress in Steel Building Structures, 2007, 9(3):58-62. (in Chinese)
[25] 张爱林, 张勋, 刘学春, 等. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9):54-63, 72. Zhang Ailin, Zhang Xun, Liu Xuechun, et al. Experimental study on seismic behavior of steel frame with prefabricated beam-only connected steel plate shear wall[J]. Engineering Mechanics, 2018, 35(9):54-63, 72. (in Chinese)
[26] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"讨论[J]. 工程力学, 2017, 34(3):36-46. Feng Peng, Qiang Hanlin, Ye Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3):36-46. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[3] 补国斌, 周靖, 王菁菁. 速度脉冲地震和结构偏心耦合效应对结构影响系数的修正[J]. 工程力学, 2019, 36(8): 217-225.
[4] 赵必大, 蔡扬政, 王伟. 支主管夹角对X形圆钢管节点平面外受弯性能影响[J]. 工程力学, 2019, 36(7): 99-108.
[5] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[6] 刘嘉琳, 徐龙河. 带自复位耗能支撑钢板剪力墙墙板受力性能研究[J]. 工程力学, 2019, 36(7): 156-164.
[7] 王威, 刘格炜, 苏三庆, 张龙旭, 任英子, 王鑫. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197-206,226.
[8] 邓明科, 李彤, 樊鑫淼. 高延性混凝土加固砖柱轴压性能试验研究[J]. 工程力学, 2019, 36(5): 92-99.
[9] 王俊杰, 王伟. 考虑罗德角参数的钢材薄板延性断裂标定方法[J]. 工程力学, 2019, 36(5): 37-43.
[10] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[11] 王斌, 史庆轩, 蔡文哲. 带翼缘剪力墙截面曲率分析及延性的计算[J]. 工程力学, 2019, 36(12): 165-176.
[12] 邓明科, 李睿喆, 张阳玺, 闵秀明. 高延性混凝土偏心受压柱正截面受力性能试验研究[J]. 工程力学, 2019, 36(11): 62-71.
[13] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[14] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54-63,72.
[15] 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8): 130-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[4] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[5] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[6] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[7] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[8] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[9] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
[10] 李元齐;田村幸雄;沈祖炎. 单层网壳结构等效静风荷载分布估计[J]. 工程力学, 2006, 23(1): 57 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日