工程力学 ›› 2019, Vol. 36 ›› Issue (8): 217-225.doi: 10.6052/j.issn.1000-4750.2018.12.0725

• 土木工程学科 • 上一篇    下一篇

速度脉冲地震和结构偏心耦合效应对结构影响系数的修正

补国斌1, 周靖2,3, 王菁菁1   

  1. 1. 湖南工业大学土木工程学院, 株洲 412007;
    2. 湘潭大学土木工程与力学学院, 湘潭 411105;
    3. 华南理工大学土木与交通学院, 广州 510641
  • 收稿日期:2019-01-08 修回日期:2019-04-06 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 补国斌(1986-),男(苗族),湖南芷江人,讲师,博士,主要从事结构抗震和弹塑性分析方法研究(E-mail:guobin.bu@163.com). E-mail:guobin.bu@163.com
  • 作者简介:周靖(1974-),男,湖南沅江人,副教授,博士,主要从事结构抗震和组合结构研究(E-mail:jingzhchina@163.com);王菁菁(1986-),女,湖南株洲人,讲师,博士,主要从事结构抗震和振动控制研究(E-mail:wangjj@hut.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51708205,51608190);湖南省自然科学基金项目(2017JJ3058,2018JJ2401)

MODIFICATION OF STRUCTURAL INFLUENCE FACTORS FOR THE COUPLING EFFECT OF PULSE-LIKE GROUND MOTION AND STRUCTURAL ECCENTRICITY

BU Guo-bin1, ZHOU Jing2,3, WANG Jing-jing1   

  1. 1. College of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China;
    2. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China;
    3. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
  • Received:2019-01-08 Revised:2019-04-06 Online:2019-08-25 Published:2019-08-10

摘要: 研究结构偏心和速度脉冲强震双重耦合不利对钢筋混凝土框架体系结构影响系数的修正措施。通过理论推导建立该耦合不利效应对结构影响系数的修正方法,给出修正系数计算流程。以最不利的强度偏心框架为对象,分别选取10条速度脉冲型和非速度脉冲型地震加速度记录,开展非线性动力时程分析,量化速度脉冲地震效应、偏心率、结构延性和楼层数对修正系数的影响规律。基于数值分析结果,建立修正系数的拟合关系式。结果表明,速度脉冲地震工况下的修正系数明显大于非速度脉冲工况。修正系数随偏心率增大,先线性增大后非线性急剧增大。偏心较小时,延性对修正系数的影响较小;偏心较大时,修正系数随延性的增大而减小。楼层数对修正系数无明显影响。拟合的修正系数关系式可为抗震设计中综合考虑速度脉冲地震和结构偏心的不利影响提供参考。

关键词: 结构影响系数, 强度偏心, 速度脉冲地震, 抗震, 延性

Abstract: The modification of the structural influence factors considering the adverse effects from both structural eccentricity and pulse-like earthquake effect was investigated for reinforced concrete frame systems. The modification method was established theoretically and the calculating process was described. Ten pulse-like and ten non-pulse-like ground motions were employed in the nonlinear dynamic time history analysis on frames with the most unfavorable strength eccentricity. The relationships between the modification factor and the pulse-like effect, eccentricity, ductility and story number were studied quantitatively. Based on the numerical results, a fitting formula was established to estimate the modification factor. It showed that the modification factors for pulse-like cases were clearly greater than those for non-pulse-like cases. In addition, the modification factor increased linearly first and subsequently nonlinearly with an increasing eccentricity. The ductility had a small effect on systems with lower eccentricities, while for systems with higher eccentricities the modification factor decreased as the ductility increased. The influence of story number was not significant. Furthermore, the fitted formula can be applied as a reference in seismic design to comprehensively consider the disadvantages of the pulse-like earthquakes and structural eccentricity.

Key words: structural influence factor, strength eccentricity, pulse-like ground motion, seismic, ductility

中图分类号: 

  • TU352.1+1
[1] Zerbin M, Aprile A, Beyer K, et al. Ductility reduction factor formulations for seismic design of RC wall and frame structures[J]. Engineering Structures, 2019, 178(1):102-115.
[2] NBCC. The national building code of Canada[S]. Ottawa:National Research Council, 2010.
[3] IBC. International building code[S]. Virginia, USA:International Code Council, 2012.
[4] Eurocode 8. Design of structures for earthquake resistance[S]. CEN, Brussels, Belgium:European Committee for Standardizations, 2004.
[5] TJ11-78, 工业与民用建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 1979. TJ11-78, Code for seismic design of industrial and civil buildings[S]. Beijing:China Architecture and Building Press, 1979. (in Chinese)
[6] CECS160, 建筑工程抗震性态设计通则[S]. 北京:中国计划出版社, 2004. CECS160, Guidelines for seismic design of buildings[S]. Beijing:China Planning Press, 2004. (in Chinese)
[7] 叶列平, 方鄂华. 关于建筑结构地震作用计算方法的讨论[J]. 建筑结构, 2009, 39(2):1-7. Ye Lieping, Fang Ehua. Discussion on calculation method of earthquake force for building structures[J]. Building Structure, 2009, 39(2):1-7. (in Chinese)
[8] Dutta S C, Roy R. Seismic demand of low-rise multistory systems with general asymmetry[J]. Journal of Engineering Mechanics, 2012, 138(1):1-11.
[9] 孙玉平, 叶列平, 赵世春, 等. 日本钢筋混凝土结构大震抗震验算的保有耐力计算方法[J]. 建筑结构学报, 2011, 32(9):65-74. Sun Yuping, Ye Lieping, Zhao Shichun, et al. Seismic design methodology for reinforced concrete structures under strong earthquake in Japan[J]. Journal of Building Structures, 2011, 32(9):65-74. (in Chinese)
[10] Tena-Colunga A, Mena-Hernández U, Pérez-Rocha L, et al. Updated seismic design guidelines for model building code of Mexico[J]. Earthquake Spectra, 2009, 25(4):869-898.
[11] Li C, Kunnath S, Zhai C. Influence of early-arriving pulse-Like ground motions on ductility demands of single-degree-of-Freedom systems[J]. Journal of Earthquake Engineering, 2018:1-24. doi:10.1080/13632469.2018.1466744.
[12] Zhai C, Li C, Kunnath S, et al. An efficient algorithm for identifying pulse-like ground motions based on significant velocity half-cycles[J]. Earthquake Engineering & Structural Dynamics, 2018, 47(3):757-771.
[13] 贾俊峰, 杜修力, 韩强. 近断层地震动特征及其对工程结构影响的研究进展[J]. 建筑结构学报, 2015, 36(1):1-12. Jia Junfeng, Du Xiuli, Han Qiang. A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures[J]. Journal of Building Structures, 2015, 36(1):1-12. (in Chinese)
[14] 谢俊举, 李小军, 温增平. 近断层速度大脉冲对反应谱的放大作用[J]. 工程力学, 2017, 34(8):194-211. Xie Junju, Li Xiaojun, Wen Zengping. Seismic behavior analysis of prestressed concrete frame structure under near-fault pulsed ground motions[J]. Engineering Mechanics, 2017, 34(8):194-211. (in Chinese)
[15] 补国斌, 蔡健, 周靖, 等. 速度脉冲地震作用下偏心结构的弹塑性抗震研究[J]. 工程力学, 2015, 32(2):131-138. Bu Guobin, Cai Jian, Zhou Jing, et al. Elastoplastic
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[3] 张浩, 连鸣, 苏明周, 程倩倩, 关彬林. 含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(S1): 78-85.
[4] 尚庆学, 李吉超, 王涛. 医疗系统抗震韧性评估指标体系[J]. 工程力学, 2019, 36(S1): 106-110.
[5] 赵宪忠, 戴柳丝, 黄兆祺, 任重. 钢货架结构研究现状与关键技术[J]. 工程力学, 2019, 36(8): 1-15.
[6] 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141-148.
[7] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式钢管混凝土格构柱拟动力试验研究[J]. 工程力学, 2019, 36(7): 67-78.
[8] 侯立群, 闫维明, 陈适才, 陆新征. 内置角钢改进夹心节点抗震性能研究与抗剪承载力计算[J]. 工程力学, 2019, 36(7): 79-88.
[9] 赵必大, 蔡扬政, 王伟. 支主管夹角对X形圆钢管节点平面外受弯性能影响[J]. 工程力学, 2019, 36(7): 99-108.
[10] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[11] 周颖, 吴浩, 顾安琪. 地震工程:从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1-12.
[12] 王宇航, 刘元九, 周绪红. 腹板屈曲约束钢连梁抗震性能研究[J]. 工程力学, 2019, 36(6): 49-59,69.
[13] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[14] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[15] 邓明科, 李彤, 樊鑫淼. 高延性混凝土加固砖柱轴压性能试验研究[J]. 工程力学, 2019, 36(5): 92-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日