工程力学 ›› 2019, Vol. 36 ›› Issue (12): 145-152.doi: 10.6052/j.issn.1000-4750.2018.12.0724

• 土木工程学科 • 上一篇    下一篇

深埋隧洞分步支护合理支护时机的力学研究

周建1, 胡坚2, 王浩1, 杨新安1   

  1. 1. 同济大学道路与交通工程教育部重点实验室, 上海 201804;
    2. 浙江温州沈海高速公路有限公司, 浙江, 温州 325000
  • 收稿日期:2019-01-08 修回日期:2019-06-05 出版日期:2019-12-25 发布日期:2019-06-14
  • 通讯作者: 胡坚(1986-),男,浙江温州人,工程师,工学硕士,主要从事隧道工程方面工作(E-mail:410913853@qq.com). E-mail:410913853@qq.com
  • 作者简介:周建(1992-),男,江苏南通人,博士生,主要从事隧道工程方面研究(E-mail:1982426967@qq.com);王浩(1991-),男,山东滕州人,博士生,主要从事隧道工程方面研究(E-mail:770893890@qq.com);杨新安(1964-),男,山西芮城人,教授,工学博士,博导,主要从事隧道及地下工程方面研究(E-mail:xyang@tongji.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51178336);浙江省交通运输厅科研计划项目(2017038)

MECHANICAL STUDY ON STEP-BY-STEP TIMELY SUPPORTING FOR DEEP-BURIED TUNNELS

ZHOU Jian1, HU Jian2, WANG Hao1, YANG Xin-an1   

  1. 1. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China;
    2. Zhejiang Wenzhou Shenhai Express Way Co. Ltd., Wenzhou, Zhejiang 325000, China
  • Received:2019-01-08 Revised:2019-06-05 Online:2019-12-25 Published:2019-06-14

摘要: 针对深埋隧洞分步支护时机缺乏可靠的理论研究,借助支护形式为“初衬+锚杆+钢拱架+二衬”的复合式衬砌结构,建立隧洞力学模型,基于Mohr-Coulomb准则,考虑开挖“空间效应”、衬砌时效特性以及支护结构分步施加的时机,推导了隧洞开挖与支护过程中塑性区应力、洞壁位移以及支护压力解析解。通过算例将该文理论成果与数值方法对比分析,验证了该方法的可行性,另外,分析了隧洞支护过程中塑性区应力、洞壁位移、支护压力的变化情况并提出隧洞分步支护的合理支护时机。研究表明:支护结构施加过程中,围岩塑性区的径向应力逐渐加强,切向应力峰区向洞壁转移,塑性区厚度大幅降低,其中,锚杆和钢拱架作用明显;优化初支施加时机后,洞壁最大位移、二衬荷载分担比较算例分别减少27.4%、13.2%,并根据优化结果给出支护结构施加时刻的建议值。研究成果对长期困扰隧道工程界支护结构如何分步支护提供了理论借鉴。

关键词: 分步支护时机, 复合式衬砌, 塑性区, 洞壁位移, 支护压力

Abstract: Due to the lack of theoretical studies of step-by-step supporting time for deep-buried tunnels, a mechanical model was established using the composite lining structure of ‘initial lining + bolt + steel arch frame + second lining’. Based on the Mohr-Coulomb criterion, the ‘space effect’ of excavation, the time-effect characteristics of lining and the time of step-by-step application of supporting structure were considered. The analytical expressions of the stress and deformation in the plastic zone, and the supporting pressure in the process of excavation and supporting were derived. Results from the derivation and numerical modelling were compared and the credibility of the proposed model was verified. The variation of stress in the plastic zone, displacement of the tunnel wall, supporting pressure and the supporting time were studied. Moreover, the optimal time of step-by-step supporting for tunnels were suggested. Results show that the radial stress in the plastic zone in the surrounding rocks gradually strengthened. The tangential stress of the peak area transferred to the tunnel wall and the thickness of the plastic zone decreased greatly during the installation time. Bolts and steel arches played important roles. After optimizing the time of application of the initial support, the maximum displacement of the tunnel wall and the load sharing of the secondary lining were reduced by 27.4% and 12.2% respectively. Furthermore, the optimal time for the application of supporting structures was recommended. This study is expected to provide a theoretical guidance for step-by-step supporting in tunnel engineering.

Key words: step-by-step supporting time, composite lining structure, plastic zone, tunnel wall, supporting pressure

中图分类号: 

  • TU457
[1] 张顶立, 陈峰宾, 房倩. 隧道初期支护结构受力特性及适用性研究[J]. 工程力学, 2014, 31(7):78-84. Zhang Dingli, Chen Fengbin, Fang Qian. Study on mechanical characteristics and applicability of primary lining used in tunnel[J]. Engineering Mechanics, 2014, 31(7):78-84. (in Chinese)
[2] 孙振宇, 张顶立, 房倩. 隧道锚固系统的协同作用及设计方法[J]. 工程力学, 2019, 36(5):53-66, 75. Sun Zhenyu, Zhang Dingli, Fang Qian. The synergistic effect and design method of tunnel anchorage system[J]. Engineering Mechanics, 2019, 36(5):53-66, 75. (in Chinese)
[3] 冯冀蒙, 仇文革, 王航. 隧道复合式衬砌初期支护极限状态模型试验研究[J]. 岩土力学, 2012, 33(11):3345-3351. Feng Jimeng, Qiu Wenge, Wang Hang, et al. Model testing research on limit state of primary support in composite lining tunnels[J]. Rock and Soil Mechanics, 2012, 33(11):3345-3351. (in Chinese)
[4] 陈建勋, 欧阳院平, 王明年. 公路隧道复合式衬砌结构数值计算及分析[J]. 中国公路学报, 2006, 19(2):74-79. Chen Jianxun, Ouyang Yuanping, Wang Mingnian. Numerical computing and analysis of highway tunnel composite lining structure[J]. China Journal of Highway and Transport, 2006, 19(2):74-79. (in Chinese)
[5] de Farias M M, Moraes A H, de Assis A P. Displacement control in tunnels excavated by the NATM:3-D numerical simulations[J]. Tunneling and Underground Space Technology, 2004, 19(3):283-293.
[6] 苏凯, 崔金鹏, 张智敏. 隧洞施工开挖过程初次支护时机选择方法[J]. 中南大学学报(自然科学版), 2015, 46(8):3075-3082. Su Kai, Cui Jinpeng, Zhang Zhimin. Method of choosing initial supporting time during tunnel excavation[J]. Journal of Central South University (Science and Technology), 2015, 46(8):3075-3082. (in Chinese)
[7] 杨建平, 陈卫忠. 小净距公路隧道支护时机对围岩稳定性影响研究[J]. 岩土力学, 2008, 29(2):483-490. Yang Jianping, Chen Weizhong. Effect of sup-porting time on stability of small spacing roadway tunnel[J].Rock and Soil Mechanics, 2008, 29(2):483-490. (in Chinese)
[8] 王中文, 方建勤. 考虑围岩蠕变特性的隧道二衬合理支护时机确定方法[J]. 岩石力学与工程学报, 2010, 29(增刊1):3241-3246. Wang Zhongwen, Fang Jianqin. Determination method of supporting time for secondary lining in tunnel considering rock creep behaviors[J]. Chinese Journal of Rock Mechanics and Engi-neering, 2010, 29(Suppl 1):3241-3246. (in Chinese)
[9] 来弘鹏, 林永贵, 谢永利, 等. 支护时机对软弱围岩公路隧道力学特征影响的试验研究[J]. 岩土工程学报, 2009, 31(3):390-395. Lai Hongpeng, Lin Yonggui, Xie Yongli, et al. Influence of supporting opportunity on stress characteristics of soft-weak surrounding rocks in highway tunnels[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3):390-395. (in Chinese)
[10] 张建海, 王仁坤, 周钟, 等. 基于时效变形的脆性围岩最优支护时机研究[J]. 岩土工程学报, 2017, 39(10):1908-1914. Zhang Jianhai, Wang Renkun, Zhou Zhong, et al. Optimum support time of brittle underground cavern based on time-dependent deformation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10):1908-1914. (in Chinese)
[11] Liu W W, Feng Q, Fu S G. Elasto-plastic solution for cold-regional tunnels considering the compound effect of non-uniform frost heave, supporting strength and supporting time[J]. Tunnelling and Ungerground Space Technology, 2018, 82(8):293-302.
[12] 王华宁, 李悦, 骆莉莎, 等. 应变软化弹塑性岩体中TBM施工过程围岩力学状态的理论分析[J]. 岩石力学与工程学报, 2016, 35(2):356-368. Wang Huaning, Li Yue, Luo Lisha, et al. Analytical research of mechanical response of TBM construction in strain-softening elasto-plastic rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2):356-368. (in Chinese)
[13] 赵光明, 彭瑞, 孟祥瑞, 等. 软岩巷道开挖-支护过程承载结构稳定性分析[J]. 中国矿业大学报, 2017, 46(4):792-802. Zhao Guangming, Peng Rui, Meng Xiangrui, et al. Stability of bearing structure during soft roadway excavation-supporting[J]. Journal of China University of Mining & Tech-nology, 2017, 46(4):792-802. (in Chinese)
[14] 孙钧. 岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报, 2007, 26(6):1081-1106. Sun Jun. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6):1081-1106. (in Chinese)
[15] Carranza T C, Fairhurst C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunnelling and Underground Space Technology, 2000, 15(2):187-213.
[16] 侯公羽, 李晶晶, 杨悦, 等. 围岩弹塑性变形条件下锚杆、喷混凝土和U型钢的支护效果研究[J]. 岩土力学, 2014, 35(5):1357-1376. Hou Gongyu, Li Jingjing, Yang Yue, et al. Support effects of anchor bolt, shotcrete and U-steel in elastoplastic stage of surrounding rock[J]. Rock and Soil Mechanics, 2014, 35(5):1357-1376. (in Chinese)
[17] Bay J A, Stokoe II K H. Field determination of stiffness and integrity of PCC members using the SASW method[C]//Proceedings of the Nondestructive Evaluation of Civil Structures and Materials Conference. Boulder:University of Colorado, 1990:71-86.
[18] Pan Y W, Dong J J. Time-dependent tunnel convergence-I formulation of the model[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1991, 28(6):469-475.
[19] 孟强, 赵洪波, 茹忠亮, 等. 锚杆支护圆形隧洞弹塑性解[J]. 工程力学, 2015, 32(7):17-25. Meng Qiang, Zhao Hongbo, Ru Zhongliang, et al. Analytical solution for circular tunnels with rock bolts[J]. Engineering Mechanics, 2015, 32(7):17-25. (in Chinese)
[20] 晏勤, 李树忱, 谢璨, 等. 锚杆加固作用下圆形隧道复合岩体围岩特征曲线解析方法研究[J]. 岩石力学与工程学报, 2017, 36(12):3021-3027. Yan Qin, Li Shuchen, Xie Can, et al. Analytical solution for ground characteristic curve of composite rock mass reinforced by bolts in circular tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12):3021-3027. (in Chinese)
[21] Indraratna B, Kaiser P K. Analytical model for the design of grouted rock bolt[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(4):227-251.
[22] 邓斌, 饶和根, 廖卫平. 软岩隧道支护结构优化研究[J]. 铁道科学与工程报, 2017, 14(10):2203-2213. Deng Bin, Rao Hegen, Liao Weiping, et al. Optimization of the soft rock tunnel support structure[J]. Journal of Railway Science and Engineering, 2017, 14(10):2203-2213. (in Chinese)
[23] 谷拴成, 黄荣宾, 苏培莉. 考虑隧道围岩蠕变的复合式衬砌受力规律[J]. 交通运输工程学报, 2018, 18(2):53-60. Gu Shuancheng, Huang Rongbin, Su Peili. Force rule of composite lining considering creep of tunnel surrounding rock[J]. Journal of Traffic an Transportation Engineering, 2018, 18(2):53-60. (in Chinese)
[24] 李树忱, 晏勤, 谢璨, 等. 膨胀性黄土隧道钢拱架-格栅联合支护力学特性研究[J]. 岩石力学与工程学报, 2017, 36(2):446-456. Li Shuchen, Yan Qin, Xie Can, et al. The study on mechanical behavior of composite supports of steel-grid in loess tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2):446-456. (in Chinese)
[25] 曲海锋, 朱合华, 黄成造, 等. 隧道初期支护的钢拱架与钢格栅选择研究[J]. 地下空间与工程学报, 2007, 3(2):258-262. Qu Haifeng, Zhu Hehua, Huang Chengzao, et al. Study on selection of section-steel and grid-steel in primary support system of tunnel[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(2):258-262. (in Chinese)
[1] 叶继红, 张梅. 单层网壳结构弹塑性屈曲分析的离散单元法研究[J]. 工程力学, 2019, 36(7): 30-37,47.
[2] 赵明君,刘剑雄,杨邦成. 轻薄型金属反平面撕裂机理研究[J]. 工程力学, 2013, 30(12): 259-266.
[3] 李灿明, 兰亮云, 宋红宇, 赵德文. GM屈服准则求解I型裂尖塑性区[J]. 工程力学, 2012, 29(增刊I): 20-22,28.
[4] 沙宇, 张嘉振, 白士刚, 周振功. 拉-压循环加载下铝合金疲劳裂纹扩展的压载荷效应研究[J]. 工程力学, 2012, 29(10): 327-334.
[5] 谢 凡;沈蒲生;王海波. 柔度法考虑钢筋混凝土梁柱单元变形局部化的计算方法[J]. 工程力学, 2011, 28(10): 118-123.
[6] 雷震宇;周顺华. 浅埋大跨度隧道临时支撑的拆除分析[J]. 工程力学, 2006, 23(9): 120-124.
[7] 赵均海;魏雪英;马淑芳. 混凝土结构I型裂纹裂尖塑性区研究[J]. 工程力学, 2006, 23(9): 141-145.
[8] 周小平;张永兴. 裂纹面受两对集中剪力作用下的弹塑性分析[J]. 工程力学, 2006, 23(12): 14-18.
[9] 王承强;郑长良. Ⅰ型和Ⅱ型Dugdale模型解析元列式及其半解析有限元法[J]. 工程力学, 2005, 22(6): 37-40,6.
[10] 郑廷银;赵惠麟. 空间钢框架结构的改进双重非线性分析[J]. 工程力学, 2003, 20(6): 202-208,.
[11] 崔江余;宋金峰. 地基临塑荷载的分析[J]. 工程力学, 1998, 15(4): 96-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[2] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[3] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[4] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[8] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[9] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[10] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日