工程力学 ›› 2019, Vol. 36 ›› Issue (12): 134-144.doi: 10.6052/j.issn.1000-4750.2018.12.0722

• 土木工程学科 • 上一篇    下一篇

基于悬吊系统的钢-混凝土组合桥面系试验

李政圜1, 樊健生1, 马晓伟1,2, 聂鑫1   

  1. 1. 清华大学土木工程系, 北京 100084;
    2. 北京师范大学地理科学学部, 北京 100875
  • 收稿日期:2018-12-30 修回日期:2019-04-08 出版日期:2019-12-25 发布日期:2019-05-31
  • 通讯作者: 马晓伟(1989-),男,山西人,讲师,博士,主要从事组合结构研究工作(E-mail:maxw007@foxmail.com). E-mail:maxw007@foxmail.com
  • 作者简介:李政圜(1993-),男,湖北人,博士生,主要从事组合结构研究工作(E-mail:zhengyuanli10@163.com);樊健生(1975-),男,山东人,教授,博士,博导,主要从事组合结构教学与研究工作(E-mail:fanjsh@tsinghua.edu.cn);聂鑫(1986-),男,湖南人,助理教授,博士,博导,主要从事组合结构教学与研究工作(E-mail:xinnie@tsinghua.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51708329)

TEST ON THE STEEL-CONCRETE COMPOSITE GIRDER BY USING SUSPENSION SYSTEM

LI Zheng-yuan1, FAN Jian-sheng1, MA Xiao-wei1,2, NIE Xin1   

  1. 1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
    2. Department of Geographical Science, Beijing Normal University, Beijing 100875, China
  • Received:2018-12-30 Revised:2019-04-08 Online:2019-12-25 Published:2019-05-31

摘要: 新型抗拔不抗剪T型连接件(T型连接件)能有效改善组合梁负弯矩区混凝土的抗裂性能。为研究悬索桥桥面系受力状态,同时探究T型连接件对组合桥面系力学性能的影响,该文开展了钢-混凝土组合桥面系的悬吊试验研究,并建立了ANSYS有限元模型对试验结果展开分析。构件采用工字型截面,在构件北侧南侧分别设置T型连接件和栓钉。试验中采用悬吊装置将构件吊起,加载方案包括弹性工况、扭转工况及极限工况加载。研究结果表明T型连接件能有效降低混凝土拉应力。在正常使用阶段T型连接件对桥面系刚度影响较小,在屈服荷载后才会因显著的界面滑移导致刚度下降;此外T型连接件也会一定程度降低桥面系扭转刚度。T型连接件的使用会增大钢结构压应力,设计时需注意钢结构的防屈曲设计。为充分释放钢-混凝土界面剪力,T型连接件在设计时塑料泡棉的厚度应满足正常使用阶段界面最大滑移量的要求。此外,试验结果也体现出悬索桥桥面系与连续梁受力状态的差异。该文研究成果能为T型连接件的后续理论分析及工程应用提供支撑,基于悬吊系统的试验方法可为悬索桥试验研究提供借鉴。

关键词: 抗拔不抗剪T型连接件, 组合桥面系, 悬索桥, 悬吊系统, 有限元分析

Abstract: A new kind of uplift-restricted and slip-permitted T-shape (URSP-T) connector was introduced to decrease the tensile stress of the concrete slab in composite girders subjected to hogging moment. To investigate the performance of a suspension bridge and to study the influence of URSP-T connectors on a composite girder, a three-span composite girder was tested by using a suspension system, and a finite element model was established by ANSYS to analyze test results. The specimen adopted an I-shaped form, and URSP-T connectors were installed at the north side of a specimen to compare with the studs installed at the south side. In the test, the specimen was lifted by the suspension system, and the loading scheme included elastic working conditions, torsional working condition and ultimate working condition. The results showed that URSP-T connectors could decrease the tensile stress of concrete slab effectively. The bending stiffness of a bridge girder was little influenced by URSP-T connectors under normal use stage, but significant interface slip occurred after yield load and the bending stiffness decreased correspondingly. Besides, the torsional stiffness of a bridge girder was also reduced by URSP-T connectors to some extent. The use of URSP-T connectors would increase the compressive stress of a steel girder, and attention should be paid to the buckling behavior of a steel girder in design. To fully release the shear force at a steel-concrete interface, the thickness of foamed plastics should meet the requirement of the maximum interface slippage under normal use stage. The test results also revealed the differences between the supporting system of a suspension bridge and that of a continuous beam. This study can support the subsequent analysis and engineering application of URSP-T connectors, and the test method can provide a reference for the experimental study of suspension bridges.

Key words: uplift-restricted and slip-permitted T-shape connector, composite girder, suspension bridge, suspension system, finite element analysis

中图分类号: 

  • U448.25
[1] 聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32(2):3-8. Nie Jianguo, Yu Zhiwu. Research and practice of composite steel-concrete beams in China[J]. China Civil Engineering Journal, 1999, 32(2):3-8. (in Chinese)
[2] 钟新谷, 舒小娟, 郑玉国, 等. 钢箱-混凝土组合梁正截面承载力的初步研究[J]. 土木工程学报, 2002, 35(6):73-78. Zhong Xingu, Shu Xiaojuan, Zheng Yuguo, et al. Research on bearing capacity of steel box-concrete composite beams[J]. China Civil Engineering Journal, 2002, 35(6):73-78. (in Chinese)
[3] Viest I M. Investigation of stud shear connectors for composite concrete and steel T-beams[J]. Journal of the American Concrete Institute, 1956, 27(8):875-891.
[4] 张彦玲, 樊健生, 李运生. 连续组合梁桥裂缝发展规律分析及裂缝宽度计算[J]. 工程力学, 2011, 28(7):84-90. Zhang Yanling, Fan Jiansheng, Li Yunsheng. Law of crack development and calculation of crack width of continuous composite beams[J]. Engineering Mechanics, 2011, 28(7):84-90. (in Chinese)
[5] 聂建国, 李法雄, 樊健生, 等. 不同翼板形式组合梁受弯性能试验研究[J]. 公路交通科技, 2009, 26(10):53-58. Nie Jianguo, Li Faxiong, Fan Jiansheng, et al. Experimental study on flexural behavior of composite beams with different styles of concrete flange[J]. Journal of Highway and Transportation Research and Development, 2009, 26(10):53-58. (in Chinese)
[6] Ansourian P. Experiments on continuous composite beams[C]//Proceedings of the Institution of Civil Engineers. Sydney:School of Civil Engineering, University of Sydney, 1981:25-71.
[7] 胡少伟, 叶祥飞. 预应力连续组合梁负弯矩区抗弯承载力分析[J]. 工程力学, 2013, 30(11):160-165. Hu Shaowei, Ye Xiangfei. Analysis on the bending capacity of the negative moment region in prestressed continuous composite beams.[J]. Engineering Mechanics, 2013, 30(11):160-165. (in Chinese)
[8] 王忠彬, 杨进, 周平. 鹦鹉洲长江大桥钢-混结合梁悬索桥方案研究[J]. 桥梁建设, 2010, 2010(4):52-56. Wang Zhongbin, Yang Jin, Zhou Ping. Study of steel and concrete composite girder suspension bridge scheme for Yinwuzhou Changjiang River Bridge[J]. Bridge Construction, 2010, 2010(4):52-56. (in Chinese)
[9] 聂建国, 陶慕轩, 聂鑫, 等. 抗拔不抗剪连接新技术及其应用[J]. 土木工程学报, 2015, 48(4):7-14, 58. Nie Jianguo, Tao Muxuan, Nie Xin, et al. New technique and application of uplift-restricted and slip-permitted connection[J]. China Civil Engineering Journal, 2015, 48(4):7-14, 58. (in Chinese)
[10] 聂建国, 李一昕, 陶慕轩, 等. 新型抗拔不抗剪连接件抗拔性能试验[J]. 中国公路学报, 2014, 27(4):38-45. Nie Jianguo, Li Yixin, Tao Muxuan, et al. Experimental research on uplift performance of a new type of uplift restricted-slip free connector[J]. China Journal of Highway and Transport, 2014, 27(4):38-45. (in Chinese)
[11] 聂建国, 马原. 抗拔不抗剪栓钉连接件抗拔性能试验研究[J]. 特种结构, 2015, 32(3):6-12. Nie Jianguo, Ma Yuan. Experimental study on uplift restricted-slip free connector[J]. Special Structures, 2015, 32(3):6-12. (in Chinese)
[12] 聂建国, 李一昕, 陶慕轩. 新型抗拔不抗剪连接件的滑移性能及其滞回模型[J]. 工程力学, 2014, 31(11):46-52. Nie Jianguo, Li Yixin, Tao Muxuan. Slip performance and hysteresis model of a new type of uplift restricted-slip free connectors[J]. Engineering Mechanics, 2014, 31(11):46-52. (in Chinese)
[13] Nie J G, Li Y X, Tao M X, et al. Uplift-restricted and slip-permitted T-shape connectors[J]. Journal of Bridge Engineering, 2014, 20(4):04014073.
[14] Nie J G, Zhu Y J, Tao M X, et al. Optimized prestressed continuous composite girder bridges with corrugated steel webs[J]. Journal of Bridge Engineering, 2016, 22(2):04016121.
[15] Jiang Y, Hu X, Hong W, et al. Experimental study and theoretical analysis of partially encased continuous composite beams[J]. Journal of Constructional Steel Research, 2016, 117:152-160.
[16] Rusch H. Researches toward a general flexural theory for structural concrete[J]. Journal of the American Concrete Institute, 1960, 57(1):1-28.
[17] Ollgaard J G, Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normal-weight concrete[J]. AISC Engineering Journal, 1971, 8(2):55-64.
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[3] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[4] 杨浩, 罗帅, 邢国然, 王伟. 杆梁组合结构的有限元分析[J]. 工程力学, 2019, 36(S1): 154-157,169.
[5] 田敏, 赵林, 焦双健, 葛耀君. 双曲壳结构非均匀风压作用局部稳定验算[J]. 工程力学, 2019, 36(9): 136-142,153.
[6] 王威, 刘格炜, 苏三庆, 张龙旭, 任英子, 王鑫. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197-206,226.
[7] 钱海峰, 赵婧同, 王元清, 王登峰. 考虑除尘器箱体墙板-立柱协同受力时立柱在横向荷载作用下的内力计算[J]. 工程力学, 2019, 36(7): 227-237,247.
[8] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[9] 常笑, 杨璐, 王萌, 尹飞. 循环荷载下奥氏体型和双相型不锈钢材料本构关系研究[J]. 工程力学, 2019, 36(5): 137-147.
[10] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[11] 贾连光, 郎玉霄, 毕然, 宋中琦, 刘勐. 设置横向加劲肋的正六边形孔蜂窝钢梁滞回性能研究[J]. 工程力学, 2019, 36(11): 168-182.
[12] 周云, 陈太平, 胡翔, 易伟建. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1): 216-226,237.
[13] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(S1): 80-87.
[14] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161-165,180.
[15] 杨志坚, 雷岳强, 谭雅文, 李帼昌, 王景明. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(S1): 223-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[3] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[4] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[5] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[6] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[7] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[8] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[9] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[10] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日