工程力学 ›› 2019, Vol. 36 ›› Issue (12): 44-51.doi: 10.6052/j.issn.1000-4750.2018.12.0718

• 土木工程学科 • 上一篇    下一篇

基于等效纯弯曲梁的混凝土双K断裂参数研究

胡少伟1,2, 尹阳阳1, 范冰2, 张润2   

  1. 1. 河海大学土木与交通学院, 南京 210098;
    2. 南京水利科学研究院, 南京 210024
  • 收稿日期:2019-01-08 修回日期:2019-04-22 出版日期:2019-12-25 发布日期:2019-08-02
  • 通讯作者: 胡少伟(1969-),男,河南杞县人,教授,博士,主要从事混凝土断裂力学研究(E-mail:hushaowei@nhri.cn). E-mail:hushaowei@nhri.cn
  • 作者简介:尹阳阳(1991-),男,河南开封人,博士生,主要从事混凝土断裂力学研究(E-mail:yinyy1991@hhu.edu.cn);范冰(1989-),男,河南郑州人,博士生,主要从事混凝土断裂力学研究(E-mail:fanbing1989@126.com);张润(1994-),男,安徽六安人,硕士生,主要从事混凝土断裂力学研究(E-mail:hhuzhangrun@163.com).
  • 基金资助:
    国家自然科学基金重点项目(51739008);国家重大科研仪器研制项目(51527811)

STUDY OF THE DOUBIE-K FRACTURE PARAMETERS OF CONCRETE BASED ON EQUIVALENT PURE BENDING BEAMS

HU Shao-wei1,2, YIN Yang-yang1, FAN Bing2, ZHANG Run2   

  1. 1. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China;
    2. Nanjing Hydraulic Research Institute, Nanjing 210024, China
  • Received:2019-01-08 Revised:2019-04-22 Online:2019-12-25 Published:2019-08-02

摘要: 因四点弯曲梁跨中裂缝截面附近处于纯弯段,故其从理论上更符合Ι型断裂模式。基于此,该文通过开展跨中带缝的四点弯曲梁试验,将荷载作用下的四点弯曲梁纯弯曲段等效为纯弯曲梁,基于线性叠加原理给出了计算混凝土四点弯曲梁双K断裂参数的计算公式,并研究了不同初始缝高比(0.2、0.3、0.4、0.5及0.6)对四点弯曲梁双K断裂参数的影响,结果表明:随着初始缝高比的增大,试件起裂荷载Pini,最大荷载Pmax及相对临界有效裂缝扩展长度(ac-a0)/H均逐渐减小;起裂断裂韧度KICini和失稳断裂韧度KICun基本保持不变。可见,四点弯曲梁可以用于研究混凝土的双K断裂参数。

关键词: 混凝土, 四点弯曲梁, 初始缝高比, 有效裂缝长度, K断裂模型

Abstract: In a four-point bending (FPB) test, the beam segment near the mid-span cracking section is under pure bending. Therefore, the mode Ι fracture model can be better applied in theory. Based on this, FPB tests on notched beams were carried out. The calculation formulae of double-K fracture parameters were established by assuming that the pure bending segment of a FPB specimen under external load is equivalent to a pure bending specimen and by using the linear superposition principle. Moreover, the effect of different initial crack-depth ratios (0.2, 0.3, 0.4, 0.5 and 0.6) on the fracture parameters was evaluated. The results indicate that with the increase of the initial crack-depth ratio, the initial fracture load, Pini, the maximum fracture load, Pmax and the critical relative effective crack propagation length, (ac-a0)/H, decrease gradually while the initial fracture toughness, KICini and the unstable fracture toughness, KICun keep almost constant. Consequently, FPB tests can be applied to determine the double-K fracture parameters of concrete.

Key words: concrete, four-point bending beam, initial crack-depth ratio, effective crack propagation length, double-K fracture model

中图分类号: 

  • TU528
[1] Xu S L, Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture Part I:Experimental investigation of crack propagation[J]. International Journal of Fracture, 1999, 98(2):111-149.
[2] Xu S L, Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture Part II:Analytical evaluating and practical measuring methods for three-point bending notched beams[J]. International Journal of Fracture, 1999, 98(2):151-177.
[3] Xu S L, Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture Part III:Compact tension specimens and wedge splitting specimens[J]. International Journal of Fracture, 1999, 98(2):179-193.
[4] Kumar S, Barai S V. Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function[J]. Engineering Fracture Mechanics, 2009, 76(7):935-948.
[5] Kumar S, Barai S V. Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(10):645-660.
[6] 李晓东, 董伟, 吴智敏, 等. 小尺寸混凝土试件双K断裂参数试验研究[J]. 工程力学, 2010, 27(2):166-171. Li Xiaodong, Dong Wei, Wu Zhimin, et al. Experimental investigation on double-K fracture parameters of small size specimens of concrete[J]. Engineering Mechanics, 2010, 27(2):166-171. (in Chinese)
[7] 荣华, 董伟, 吴智敏, 等. 大初始缝高比混凝土试件双K断裂参数的试验研究[J]. 工程力学, 2012, 29(1):162-167. Rong Hua, Dong Wei, Wu Zhimin, et al. Experimental investigation on double-K fracture parameters for large crack-depth ratio in concrete[J]. Engineering Mechanics, 2012, 29(1):162-167. (in Chinese)
[8] 胡少伟, 米正祥. 标准钢筋混凝土三点弯曲梁双K断裂特性试验研究[J]. 建筑结构学报, 2013, 34(3):152-157. Hu Shaowei, Mi Zhengxiang. Experimental study on double-K fracture characteristics of standard reinforced concrete three-point beams[J]. Journal of Building Structures, 2013, 34(3):152-157. (in Chinese)
[9] Dong W, Wu Z M, Zhou X M. Calculating crack extension resistance of concrete based on a new crack propagation criterion[J]. Construction & Building Materials, 2013, 38(2):879-889.
[10] 徐世烺, 余秀丽, 李庆华. 电测法确定低强混凝土裂缝起裂和等效裂缝长度[J]. 工程力学, 2015, 32(12):84-89. Xu Shilang, Yu Xiuli, Li Qinghua. Determination of crack initiation and equivalent crack length of low strength concrete using strain gauges[J]. Engineering Mechanics, 2015, 32(12):84-89. (in Chinese)
[11] 王璀瑾, 董伟, 王强, 等. 混凝土Ⅰ 型裂缝扩展准则比较研究[J]. 工程力学, 2016, 33(5):89-96. Wang Cuijin, Dong Wei, Wang Qiang, et al. A comparative study on propagation criterion of concrete model Ⅰ crack[J]. Engineering Mechanics, 2016, 33(5):89-96. (in Chinese)
[12] Yu K Q, Yu J T, Lu Z D, et al. Fracture properties of high-strength/high-performance concrete (HSC/HPC) exposed to high temperature[J]. Materials and Structures, 2016, 49(11):4517-4532.
[13] 赵燕茹, 王磊, 韩霄峰, 等. 冻融条件下玄武岩纤维混凝土断裂韧度研究[J]. 工程力学, 2017, 34(9):92-101. Zhao Yanru, Wang Lei, Han Xiaofeng, et al. Fracture toughness of basalt-fiber reinforced concrete subjected to cyclic freezing and thawing[J]. Engineering Mechanics, 2017, 34(9):92-101. (in Chinese)
[14] Rong H, Dong W, Zhang X, et al. Size effect on fracture properties of concrete after sustained loading[J]. Materials and Structures, 2019, 52(1):16-27.
[15] Kumar S, Barai S V. Influence of specimen geometry on determination of double-K fracture parameters of concrete:A comparative study[J]. International Journal of Fracture, 2008, 149(1):47-66.
[16] Qing L B, Li Q B. A theoretical method for determining initiation toughness based on experimental peak load[J]. Engineering Fracture Mechanics, 2013, 99(1):295-305.
[17] 徐世烺, 张秀芳, 郑爽. 小骨料混凝土双K断裂参数的试验测定[J]. 水利学报, 2006, 37(5):543-553. Xu Shilang, Zhang Xiufang, Zheng Shuang. Experimental measurement of double-K fracture parameters of concrete with small size aggregate[J]. Journal of Hydraulic Engineering, 2006, 37(5):543-553. (in Chinese)
[18] Kumar S, Barai S V. Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function[J]. Engineering Fracture Mechanics, 2009, 76(7):935-948.
[19] Zhang X F, Xu S L. A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis[J]. Engineering Fracture Mechanics, 2011, 78(10):2115-2138.
[20] 陆洲导, 俞可权, 苏磊, 等. 高温后混凝土断裂性能研究[J]. 建筑材料学报, 2012, 15(6):836-840. Lu Zhoudao, Yu Kequan, Su Lei, et al. Residual fracture behaviors of concrete subjected to elevated temperatures[J]. Journal of Building Materials, 2012, 15(6):836-840. (in Chinese)
[21] Ince R. Determination of the fracture parameters of the double-K model using weight functions of split-tension specimens[J]. Engineering Fracture Mechanics, 2012, 96(18):416-432.
[22] 胡晓威, 张秀芳, 徐世烺. 采用立方体劈拉试件测定混凝土双K断裂参数[J]. 水利学报, 2012, 43(增刊1):98-109. Hu Xiaowei, Zhang Xiufang, Xu Shilang. Determination of double-K fracture parameters of concrete using split-tension cubes[J]. Journal of Hydraulic Engineering, 2012, 43(Suppl 1):98-109. (in Chinese)
[23] Hu S W, Zhang X F, Xu S L. Effects of loading rates on concrete double-K fracture parameters[J]. Engineering Fracture Mechanics, 2015, 149(17):58-73.
[24] Qing L B, Dong M W, Guan J F. Determining initial fracture toughness of concrete for split-tension specimens based on the extreme theory[J]. Engineering Fracture Mechanics, 2018, 189(3):427-438.
[25] Wu Y, Xu S L, Li Q H, et al. Estimation of real fracture parameters of a dam concrete with large size aggregates through wedge splitting tests of drilled cylindrical specimens[J]. Engineering Fracture Mechanics, 2016, 163(13):23-36.
[26] Xu S L, Malik M A, Li Q H, et al. Determination of double-K fracture parameters using semi-circular bend test specimens[J]. Engineering Fracture Mechanics, 2016, 152(2):58-71.
[27] 李庆华, 种法澄, 张麒, 等. 改进的圆形紧凑拉伸法研究混凝土双G断裂参数[J]. 水利学报, 2018, 49(4):474-482. Li Qinghua, Zhong Facheng, Zhang Qi, et al. Study of double-G fracture parameters using modified round compact tension method[J]. Journal of Hydraulic Engineering, 2018, 49(4):474-482. (in Chinese)
[28] Carpinteri A, Fortese G, Ronchei C, et al. Mode I fracture toughness of fibre reinforced concrete[J]. Theoretical and Applied Fracture Mechanics, 2017, 91(5):66-75.
[29] Dong W, Yang D, Zhou X, et al. Experimental and numerical investigations on fracture process zone of rock-concrete interface[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(5):820-835.
[30] Vantadori S, Carpinteri A, Guo L P, et al. Synergy assessment of hybrid reinforcements in concrete[J]. Composites Part B Engineering, 2018, 147(16):197-206.
[31] Caggiano A, Cremona M, Faella C, et al. Fracture behavior of concrete beams reinforced with mixed long/short steel fibers[J]. Construction & Building Materials, 2012, 37(3):832-840.
[32] Bencardino F, Rizzuti L, Spadea G, et al. Implications of test methodology on post-cracking and fracture behaviour of steel fibre reinforced concrete[J]. Composites Part B Engineering, 2013, 46(3):31-38.
[33] Leone M, Centonze G, Colonna D, et al. Fiber-reinforced concrete with low content of recycled steel fiber:Shear behavior[J]. Construction & Building Materials, 2018, 161(5):141-155.
[34] Tada H, Paris P C, Irwin G R. The stress analysis of cracks handbook[M]. New York:ASME Press, 2000.
[35] RILEM Technical Committee 50-FMC. Determination of fracture parameters (KIC S and CTODc) of plain concrete using three-point bend tests[J]. Materials & Structures, 1990, 23(6):457-460.
[36] Hu X Z, Duan K. Size effect and quasi-brittle fracture:The role of FPZ[J]. International Journal of Fracture, 2008, 154(1/2):3-14.
[37] Hu X Z, Guan J F, Wang Y S, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics, 2017, 175(7):146-167.
[38] 管俊峰, 王强, Hu Xiaozhi, 等. 考虑骨料尺寸的混凝土岩石边界效应断裂模型[J]. 工程力学, 2017, 34(12):22-30. Guan Junfeng, Wang Qiang, Hu Xiaozhi, et al. Boundary effect fracture model for concrete and granite considering aggregate size[J]. Engineering Mechanics, 2017, 34(12):22-30. (in Chinese)
[39] Guan J F, Hu X Z, Yao X H, et al. Fracture of 0.1 and 2 m long mortar beams under three-point-bending[J]. Materials & Design, 2017, 133(11):363-375.
[40] 徐平, 胡晓智, 张敏霞, 等. 考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用[J]. 工程力学, 2018, 35(10):75-84. Xu Ping, Hu Xiaozhi, Zhang Mingxia, et al. Quasi-brittle fracture model and application on concrete considering aggregate volume content effect[J]. Engineering Mechanics, 2018, 35(10):75-84. (in Chinese)
[41] 管俊峰, 姚贤华, 白卫峰, 等. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1):70-79. Guan Junfeng, Yao Xianhua, Bai Weifeng, et al. Determination of fracture toughness and tensile strength of concrete using small specimens[J]. Engineering Mechanics, 2019, 36(1):70-79. (in Chinese)
[1] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[2] 代鹏, 杨璐, 卫璇, 周宇航. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(S1): 298-305.
[3] 隋䶮, 薛建阳, 董金爽, 张锡成, 谢启芳, 白福玉. 附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J]. 工程力学, 2019, 36(S1): 44-53.
[4] 杜春波, 王涛, 郄毅. 交替协调子结构混合试验方法研究[J]. 工程力学, 2019, 36(S1): 54-58.
[5] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[6] 刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(S1): 149-153.
[7] 关少钰, 白涌滔, 刘卫辉, 李银胜, 王伟. 基于统一强度理论的高强钢管混凝土柱压弯屈服准则[J]. 工程力学, 2019, 36(S1): 170-174,183.
[8] 徐金金, 杨树桐, 刘治宁. 碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J]. 工程力学, 2019, 36(S1): 175-183.
[9] 梁兴文, 汪萍, 徐明雪, 于婧, 李林. 免拆UHPC模板RC梁受弯性能试验及承载力分析[J]. 工程力学, 2019, 36(9): 95-107.
[10] 田稳苓, 温晓东, 彭佳斌, 徐丽丽, 李子祥. 新型泡沫混凝土轻钢龙骨复合墙体抗剪承载力计算方法研究[J]. 工程力学, 2019, 36(9): 143-153.
[11] 覃茜, 徐千军. 成层混凝土的剪切强度和Ⅱ型断裂韧度[J]. 工程力学, 2019, 36(9): 188-196.
[12] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[13] 王威, 赵春雷, 苏三庆, 任坦, 刘格炜, 董晨阳. 带栓钉波形钢板混凝土组合构件粘结滑移性能与承载力试验研究[J]. 工程力学, 2019, 36(9): 108-119.
[14] 李聪, 陈宝春, 黄卿维. 超高性能混凝土圆环约束收缩试验研究[J]. 工程力学, 2019, 36(8): 49-58.
[15] 金浏, 余文轩, 杜修力, 张帅, 李冬. 低应变率下混凝土动态拉伸破坏尺寸效应细观模拟[J]. 工程力学, 2019, 36(8): 59-69,78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 刘灵灵;张 婷;孔艳平;王令刚. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学, 2009, 26(8): 184 -188 .
[3] 蔡松柏;沈蒲生;胡柏学;邓继华. 基于场一致性的2D四边形单元的共旋坐标法[J]. 工程力学, 2009, 26(12): 31 -034 .
[4] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[5] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[6] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[7] 简 斌;翁 健;金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 -211, .
[8] 富东慧;侯振德;秦庆华. 切槽对骨压电电压的影响[J]. 工程力学, 2011, 28(1): 233 -237 .
[9] 郭彦林;王永海. 两层通高区群柱面外稳定性能与设计方法研究[J]. 工程力学, 2011, 28(6): 52 -059 .
[10] 王 岚;常春清;邢永明. 胶粉改性沥青混合料弯曲蠕变试验研究[J]. 工程力学, 2011, 28(增刊I): 40 -043 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日