工程力学 ›› 2019, Vol. 36 ›› Issue (12): 37-43.doi: 10.6052/j.issn.1000-4750.2018.12.0716

• 土木工程学科 • 上一篇    下一篇

基于FEM-SBFEM的坝-库水动力耦合简化分析方法

许贺1,2, 邹德高1,2, 孔宪京1,2   

  1. 1. 大连理工大学海岸和近海工程国家重点实验室, 辽宁, 大连 116024;
    2. 大连理工大学水利工程学院, 辽宁, 大连 116024
  • 收稿日期:2019-01-04 修回日期:2019-04-22 出版日期:2019-12-25 发布日期:2019-09-16
  • 通讯作者: 邹德高(1973-),男,山东人,教授,博士,主要从事高土石坝抗震研究(E-mail:zoudegao@dlut.edu.cn). E-mail:zoudegao@dlut.edu.cn
  • 作者简介:许贺(1987-),男,黑龙江人,博士生,主要从事高坝与库水动力流固耦合研究(E-mail:bieshuxuhe@163.com);孔宪京(1952-),男,江苏人,教授,博士,主要从事高土石坝抗震研究(E-mail:kongxj@dlut.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2017YFC0404905);国家自然科学基金项目(51779034);中央高校基本科研业务费资助项目(DUT19ZD216)

A SIMPLIFIED DAM-RESERVOIR DYNAMIC COUPLING ANALYSIS METHOD BASED ON FEM-SBFEM

XU He1,2, ZOU De-gao1,2, KONG Xian-jing1,2   

  1. 1. State Key Laboratory of Coastal & Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China;
    2. School of Hydraulic Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2019-01-04 Revised:2019-04-22 Online:2019-12-25 Published:2019-09-16

摘要: 在坝-库水动力流固耦合分析中,比例边界有限元方法(SBFEM)仅需对流固交界面进行离散,就可以模拟半无限域库水,节省了节点自由度个数,具有较高效率。但采用数值方法处理动水压力时得到的附加质量阵为满阵,进行大规模的面板坝弹塑性动力分析时用于求解方程的时间较多。该文根据动水压力附加质量阵的物理意义与分布特点,提出了一种基于FEM-SBFEM的坝与库水的动力耦合简化计算方法,仅需提供一个保留系数β(0 ≤ β ≤ 1.0)即可实现不同程度的动水压力附加质量阵化简,简单易行;将其应用在面板坝与库水的动力弹塑性耦合计算中,建议了β的取值范围,在保证具有良好精度的前提下大幅提高了计算效率。

关键词: 比例边界有限元, 附加质量阵, 面板堆石坝, 坝-库水动力相互作用, 动水压力

Abstract: In the dam-reservoir dynamic fluid-structure coupling analysis, the scaled boundary finite element method (SBFEM) can simulate the semi-infinite reservoir water by discretizing only the interface of the fluid and the structure to save the number of node degrees of freedom and have higher efficiency. However, because the hydrodynamic pressure additional mass matrix is full, a large-scale elasto-plastic dynamic analysis of CFRD takes too much time for solving the equation. According to the physical meaning and distribution characteristics of the additional mass matrix of the hydrodynamic pressure by SBFEM, a simplified dam-reservoir dynamic coupling analysis method based on FEM-SBFEM is proposed. Only a retention coefficient β (0 ≤ β ≤ 1.0) is needed to simplify the hydrodynamic pressure additional mass matrix in different degrees, which is simple and easy. The simplified method is applied to the calculation of the dynamic elasto-plastic coupling of CFRD and reservoir water. The value range of β is suggested to improve the computational efficiency with good accuracy.

Key words: SBFEM, added mass matrix, CFRD, dam-reservoir interaction, hydrodynamic pressure

中图分类号: 

  • TV642.4+6
[1] 李俊杰, 马恒春. 蓄水期面板堆石坝动力特性研究[J]. 岩土工程学报, 1995, 17(4):20-27. Li Junjie, Ma Hengchun. Research on dynamic property of CFRD in the period of water storage[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(4):20-27. (in Chinese)
[2] 王铭明, 陈健云, 徐强, 等.不同高度重力坝动水压力分析及Westergaard修正公式研究[J]. 工程力学, 2013, 30(12):65-70, 84. Wang Mingming, Chen Jianyun, Xu Qiang, et al. Study on diffrerent height gravity hydrodynamic pressure and westergaard correction formula[J]. Engineering Mechanics, 2013, 30(12):65-70, 84. (in Chinese)
[3] 陈国荣, 姜弘道. 边界单元法在动水压力分析中的应用[J]. 河海大学学报, 1989, 17(2):19-25. Chen Guorong, Jiang Hongdao. Boundary element method for the hydrodynamic pressure[J]. Journal of Hohai University, 1989, 17(2):19-25. (in Chinese)
[4] Lin G, Wang Y, Hu Z. An efficient approach for frequency-domain and time-domain hydrodynamic analysis of dam-reservoir systems[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(13):1725-1749.
[5] 王翔, 金峰. 动水压力波高阶双渐近时域平面透射边界I:理论推导[J]. 水利学报, 2011, 42(7):839-847. Wang Xiang, Jin Feng. High-order doubly asymptotic time-domain plane transmitting boundary for hydrodynamic pressure I:Theoretical derivation[J]. Journal of Hydraulic Engineering, 2011, 42(7):839-847. (in Chinese)
[6] 李上明, 吴连军. 基于连分式与有限元法的坝库耦合瞬态分析方法[J]. 工程力学, 2016, 33(4):9-16. Li Shangming, Wu Lianjun. Dam-reservoir interaction transient-method based on continued fraction formulation and FEM[J]. Engineering Mechanics, 2016, 33(4):9-16. (in Chinese)
[7] 孔宪京, 许贺, 邹德高, 等. 不同激振方向下动水压力对高面板坝面板动应力的影响[J]. 水利学报, 2016, 47(9):1153-1159. Kong Xianjing, Xu He, Zou Degao, et al. Effects of hydrodynamic pressure on dynamic stress of slab of high concrete faced rock fill dam under excitation of different directions[J]. Journal of Hydraulic Engineering, 2016, 47(9):1153-1159. (in Chinese)
[8] 陈厚群. 水坝抗震的实验研究[J]. 工程抗震与加固改造, 1986(2):20-24, 46. Chen Houqun. Study on dam experiments of earthquake resistance[J]. Journal of Seismic Engineering and Reinforcement and Reconstruction, 1986(2):20-24, 46. (in Chinese)
[9] 阎承大, 张楚汉. 规则河谷中计算水坝动水压力的解析方法[J]. 清华大学学报:自然科学版, 1990, 30(5):15-21. Yan Chengda, Zhang Chuhan. Analytical solution for evaluation of hydrodynamic pressures for dam-reservoirs on some regular canyons[J]. Journal of Tsinghua University:Science and Technology, 1990, 30(5):15-21. (in Chinese)
[10] 王进廷, 杜修力, 张楚汉. 重力坝-库水-淤砂-地基系统动力分析的时域显式有限元模型[J]. 清华大学学报:自然科学版, 2003, 8:1112-1115.Wang Jinting, Du Xiuli, Zhang Chuhan. Explicit finite element model for dynamic analysis of dam-reservoirsediment-foundation system[J]. Journal of Tsinghua University:Science and Technology, 2003, 8:1112-1115. (in Chinese)
[11] 陈厚群, 杨大伟. 地震条件下拱坝库水相互作用的试验研究[J]. 水利学报, 1989(7):29-39. Chen Houqun, Yang Dawei. Study on arch dam-reservoir water interaction under earthquake condition[J]. Journal of Hydraulic Engineering, 1989(7):29-39. (in Chinese)
[12] Kartal M E, Bayraktar A. Non-linear earthquake response of CFR DAM-reservoir-foundation systems[J]. Mathematical and Computer Modelling of Dynamical Systems, 2013, 19(4):353-374.
[13] 迟世春, 顾淦臣. 面板堆石坝坝水系统自振特性研究[J]. 河海大学学报, 1995, 23(6):104-107. Chi Shichun, Gu Ganchen. Study on natural vibration characteristics of CFRD-reservoir system[J]. Journal of Hohai University, 1995, 23(6):104-107. (in Chinese)
[14] 岑威钧, 张自齐, 袁丽娜, 等. 库水对高面板堆石坝动力反应的影响[J]. 武汉大学学报:工学版, 2015, 48(4):441-446. Cen Weijun, Zhang Ziqi, Yuan Lina, et al. Study of influence of reservoir water on response of high concrete face rockfill dynamic dams[J]. Engineering Journal of Wuhan University, 2015, 48(4):441-446. (in Chinese)
[15] Xu H, Zou D, Kong X, et al. Error study of Westergaard's approximation in seismic analysis of high concrete-faced rockfill dams based on SBFEM[J]. Soil Dynamics and Earthquake Engineering, 2017, 94:88-91.
[16] Karalar M, Cavusli M. Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights[J]. Earthquakes and Structures, 2019, 16(2):221-234.
[17] Karalar M, Cavusli M. Evaluation of 3D Nonlinear earthquake behaviour of the ilsu CFR dam under far-fault ground motions[J]. Advances in Civil Engineering, 2019, 2019:1-15..
[18] Sotoudeh P, Ghaemian M, Mohammadnezhad H. Seismic analysis of reservoir-gravity dam-massed layered foundation system due to vertically propagating earthquake[J]. Soil Dynamics and Earthquake Engineering, 2019, 116:174-184.
[19] Wolf J P, Song C. The scaled boundary finite-element method-a primer:derivations[J]. Computers & Structures, 2000, 78(1):191-210.
[20] 孔宪京, 陈楷, 邹德高, 等. 一种高效的FE-PSBFE耦合方法及在岩土工程弹塑性分析中的应用[J]. 工程力学, 2018, 35(6):6-14. Kong Xianjing, Chen Kai, Zou Degao, et al. An efficient FE-PSBFE coupled method and application to the elasto-plastic analysis of geotechnical engineering structures[J]. Engineering Mechanics, 2018, 35(6):6-14. (in Chinese)
[21] 钟红, 林皋, 李红军. 坝基界面在非线性水压力驱动下的非线性断裂过程模拟[J]. 工程力学, 2017, 34(4):42-48. Zhong Hong, Lin Gao, Li Hongjun. Nonlinear fracture simulation of dam-foundation interface driven by nonlinear water pressure[J]. Engineering Mechanics, 2017, 34(4):42-48. (in Chinese)
[22] Xu B, Zou D, Liu H. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers and Geotechnics, 2012, 43:143-154.
[23] Ling H I, Liu H. Pressure-level dependency and densification behavior of sand through generalized plasticity model[J]. Journal of Engineering Mechanics, 2003, 129(8):851-860.
[24] 刘萌成, 高玉峰, 刘汉龙. 堆石料剪胀特性大型三轴试验研究[J]. 岩土工程学报, 2008(2):205-211. Liu Mengcheng, Gao Yufeng, Liu Hanlong. Study on shear dilatancy behaviors of rockfills in large-scale triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2008(2):205-211. (in Chinese)
[25] 张凌凯, 王睿, 张建民, 等. 不同应力路径下堆石料的动力变形特性试验研究[J]. 工程力学, 2019, 36(3):114-120, 130. Zhang Lingkai, Wang Rui, Zhang Jianmin, et al. Experimental study on dynamic deformation characteristics of rock fill materials under different stress paths[J]. Engineering Mechanics, 2019, 36(3):114-120, 130. (in Chinese)
[26] 王蕴嘉, 周梦佳, 宋二祥. 考虑颗粒破碎的堆石料湿化变形特性离散元模拟研究[J]. 工程力学, 2018, 35(增刊):217-222. Wang Yunjia, Zhou Mengjia, Song Erxiang. Dem simulation of wetting deformation characteristics of rock fill considering particle breakage[J]. Engineering Mechanics, 2018, 35(Suppl):217-222. (in Chinese)
[27] 金德海, 徐明. 考虑围压对粗粒土蠕变特性影响的Burgers模型参数修正方法研究[J]. 工程力学, 2016, 33(12):135-142. Jin Dehai, Xu Ming. Parameter correction method of burgers model for coarse-grained soil considering confining pressure[J]. Engineering Mechanics, 2016, 33(12):135-142. (in Chinese)
[28] 邹德高, 尤华芳, 孔宪京, 等. 接缝简化模型及参数对面板堆石坝面板应力及接缝位移的影响研究[J]. 岩石力学与工程学报, 2009, 28(增刊1):3257-3263. Zou Degao, You Huafang, Kong Xianjing, et al. Research on joint simplified model and effects of joint parameters on panel stress and joint displacements of faced rockfill dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Suppl 1):3257-3263. (in Chinese)
[29] Zou D, Xu B, Kong X, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rock fill dam during the Wenchuan earthquake based on a generalized plasticity model[J]. Computers and Geotechnics, 2013, 49:111-122.
[1] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55-61.
[2] 钟红, 林皋, 李红军. 坝基界面在非线性水压力驱动下的非线性断裂过程模拟[J]. 工程力学, 2017, 34(4): 42-48.
[3] 李建波, 陈白斌, 林皋. 基于水平集算法的扩展比例边界有限元法研究[J]. 工程力学, 2016, 33(8): 8-14.
[4] 庞林, 林皋, 钟红. 比例边界等几何方法在断裂力学中的应用[J]. 工程力学, 2016, 33(7): 7-14.
[5] 李乔, 刘浪, 杨万理. 深水桥梁墩水耦合振动试验研究与数值计算[J]. 工程力学, 2016, 33(7): 197-203.
[6] 李上明, 吴连军. 基于连分式与有限元法的坝库耦合瞬态分析方法[J]. 工程力学, 2016, 33(4): 9-16.
[7] 陈白斌,李建波,林皋. 基于X-SBFEM的裂纹体非网格重剖分耦合模型研究[J]. 工程力学, 2015, 32(3): 15-21.
[8] 李上明. 等横截面无限声学水域的连分式公式[J]. 工程力学, 2014, 31(8): 41-45.
[9] 施明光,徐艳杰,钟红,张楚汉. 基于多边形比例边界有限元的 复合材料裂纹扩展模拟[J]. 工程力学, 2014, 31(7): 1-7.
[10] 陈灯红, 杜成斌. 求解无限域动力刚度矩阵的双渐近算法[J]. 工程力学, 2014, 31(6): 30-34,41.
[11] 李上明. 冲击波作用下水下结构载荷计算方法[J]. 工程力学, 2014, 31(12): 11-16.
[12] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120-125.
[13] 宋 波,齐福强. 地震作用下海冰与桥墩的间距对桥墩动力响应的影响研究[J]. 工程力学, 2013, 30(2): 174-181.
[14] 李上明. 基于比例边界有限元法动态刚度矩阵的坝库耦合分析方法[J]. 工程力学, 2013, 30(2): 313-317.
[15] 王铭明,陈健云,徐强,范书立. 不同高度重力坝动水压力分析及Westergaard修正公式研究[J]. 工程力学, 2013, 30(12): 65-70,84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[4] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[5] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[6] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[7] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[8] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[9] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
[10] 李元齐;田村幸雄;沈祖炎. 单层网壳结构等效静风荷载分布估计[J]. 工程力学, 2006, 23(1): 57 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日