工程力学 ›› 2019, Vol. 36 ›› Issue (12): 235-246.doi: 10.6052/j.issn.1000-4750.2018.12.0714

• 其他工程学科 • 上一篇    下一篇

带躯干变刚度双足机器人的周期行走控制

王珊, 周亚丽, 张奇志   

  1. 北京信息科技大学自动化学院, 北京 100192
  • 收稿日期:2019-01-04 修回日期:2019-06-05 出版日期:2019-12-25 发布日期:2019-07-05
  • 通讯作者: 王珊(1994-),女,河南新乡人,硕士生,主要从事机器人控制研究(E-mail:wangshan010@qq.com). E-mail:wangshan010@qq.com
  • 作者简介:周亚丽(1968-),女,辽宁沈阳人,教授,博士,主要从事机器人控制及信号处理研究(E-mail:zhouyali6807@163.com);张奇志(1963-),男,辽宁阜新人,教授,博士,主要从事机器人控制研究(E-mail:zqzbim@163.com).
  • 基金资助:
    国家自然科学基金项目(11672044);2019北京信息科技大学研究生科技创新项目(5121911048)

PERIODIC WALKING CONTROL OF BIPED ROBOTS WITH TORSO USING VARIABLE STIFFNESS ACTUATION

WANG Shan, ZHOU Ya-li, ZHANG Qi-zhi   

  1. School of automation, Beijing Information Science & Technology University, Beijing 100192, China
  • Received:2019-01-04 Revised:2019-06-05 Online:2019-12-25 Published:2019-07-05

摘要: 研究了带躯干双足机器人平面稳定行走控制问题。改进传统的弹簧-质点模型,得到带躯干的双足机器人模型,通过控制髋关节施加力矩和改变弹簧腿的刚度,使得系统收敛到期望步态。针对系统模型的非线性和强耦合特征,采用反馈线性化方法将系统的动力学模型转化成线性系统,采用PD控制和P控制对机器人的躯干倾角和髋关节轨迹进行整体控制。在理论分析的基础上,对控制方法进行了数值仿真研究。仿真结果表明:该文采用的反馈线性化和变刚度控制方法可以实现带躯干双足机器人的稳定行走;与基于时间轨迹的控制方法相比,该文基于空间轨迹的控制器对各种外力干扰具有良好的抵抗能力;控制器对躯干的倾角变化具有适应性;当模型不确定时控制器表现出优异的鲁棒性。

关键词: 双足机器人, 欠驱动, 变刚度, 反馈线性化, 躯干, 弹簧-质点模型

Abstract: A spring-mass model with a torso represented by a rigid rod was proposed, whose stable walking control on level ground was analyzed. By controlling the torque of the hip joint and changing the stiffness of the spring legs, the system converged to the desired gait. According to the nonlinear and strong coupling characteristics of the system, the dynamic model was transformed into a linear system by the feedback linearization method. The PD control and P control were used to control the torso inclination and the hip joint trajectory of the robot. The numeric simulation results showed that the feedback linearization and variable stiffness control methods used in this study can realize the stable walking of the biped robot. It presented satisfactory anti-disturbance performance to external forces and the variation of inclination angle of torso with robustness.

Key words: biped robot, underactuation, variable stiffness, feedback linearization, torso, spring-mass model

中图分类号: 

  • TP242
[1] 程靖, 陈力. 闭链双臂空间机器人动力学建模及力矩受限情况下载荷运动自适应控制[J]. 工程力学, 2017, 34(2):235-241. Cheng Jing, Chen Li. Dynamics for dual-arm floating space robot with closed chain and adaptive control for object motion with limited torque[J]. Engineering Mechanics, 2017, 34(2):235-241. (in Chinese)
[2] 刘丽梅, 田彦涛. 动态行走双足机器人的稳定性分析与控制[M]. 北京:科学出版社, 2017:1-3. Liu Limei, Tian Yantao. Stability analysis and control of dynamic walking of the biped robot[M]. Beijing:Science Press, 2017:1-3. (in Chinese)
[3] 陈启军, 刘成菊. 双足机器人行走控制与优化[M]. 北京:清华大学出版社, 2016:1-3. Chen Qijun, Liu Chengju. Biped robot walking control and optimization[M]. Beijing:Tsinghua University Press, 2016:1-3. (in Chinese)
[4] Sakagami Y, Watanabe R, Aoyama C, et al. The intelligent asimo:system overview and integration[C]. Lausanne, Switzerland:Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002:2478-2483.
[5] McGeer T. Passive dynamic walking[J]. International Journal of Robotics Research, 1990, 9(2):62-82.
[6] Collins S, Ruina A, Tedrake R, et al. Efficient bipedal robots based on passive-dynamic walkers[J]. Science, 2005, 307(5712):1082-1085.
[7] 郭闻昊, 王琪, 王天舒. 髋关节含库伦摩擦被动行走器动力学建模与仿真研究[J]. 工程力学, 2012, 29(1):214-220. Guo Wenhao, Wang Qi, Wang Tianshu. A study of the modeling and simulation of a passive dynamic walking with coulomb friction at the hip joint[J]. Engineering Mechanics, 2012, 29(1):214-220. (in Chinese)
[8] 柳宁, 李俊峰, 王天舒. 用胞胞映射计算被动行走模型不动点的吸引盆[J]. 工程力学, 2008, 25(10):218-223. Liu Ning, Li Junfeng, Wang Tianshu. Study of the basin of attraction of passive models by the aid of cell-to-cell mapping method[J]. Engineering Mechanics, 2008, 25(10):218-223. (in Chinese)
[9] Gritli H, Belghith S. Bifurcations and chaos in the semi-passive bipedal dynamic walking model under a modified OGY-based control approach[J]. Nonlinear Dynamics, 2015, 83(4):1955-1973.
[10] 张奇志, 周亚丽. 双足机器人半被动行走固定点全局稳定性分析[J]. 工程力学, 2013, 30(3):431-436. Zhang Qizhi, Zhou Yali. Global stability analysis for the fixed point of semi-passive biped robot walking[J]. Engineering Mechanics, 2013, 30(3):431-436. (in Chinese)
[11] Blickhan R. The spring-mass model for running and hopping[J]. Journal of Biomechanics, 1989, 22(11):1217-1227.
[12] Rummel J, Blum Y, Maus H M, et al. Stable and robust walking with compliant legs[C]. Anchorage, Alaska:Proceedings of the IEEE International Conference on Robotics and Automation, 2010:5250-5255.
[13] Visser L C, Stramigioli S, Carloni R. Robust bipedal walking with variable leg stiffness[C]. Roma, Italy:Proceedings of the IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, 2012:1626-1631.
[14] Yu H T, Li M T, Cai H G. Analysis on the performance of the SLIP runner with nonlinear spring leg[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5):892-899.
[15] Shen Z, Seipel J. A Piecewise-linear approximation of the canonical spring-loaded-inverted-pendulum model of legged locomotion[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(1):011007-1-011007-9.
[16] Bae H, Oh J H. Biped robot state estimation using compliant inverted pendulum model[J]. Robotics and Autonomous Systems, 2018, 108(2018):38-50.
[17] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6):52-67. Liu Mingming, Li Hongnan, Fu Xing. Experimental and numerical analysis of an innovative re-centering shape memory alloys-shearing lead damper[J]. Engineering Mechanics, 2018, 35(6):52-67. (in Chinese)
[18] 周颖, 龚顺明. 混合非线性黏弹性阻尼器非线性特征与力学模型研究[J]. 工程力学, 2018, 35(6):132-143. Zhou Ying, Gong Shunming. Study on nonlinear characteristics and mechanical model of hybrid nonlinear viscoelastic damper[J]. Engineering Mechanics, 2018, 35(6):132-143. (in Chinese)
[19] 左国玉, 刘旭. 基于弹簧负载倒立摆模型的仿袋鼠机器人稳定跳跃控制[J]. 控制理论与应用, 2018, 35(8):1151-1158. Zuo Guoyu, Liu Xu. Stable jump control of kangaroo robot based on spring loaded inverted pendulum model[J]. Journal of control theory and applications, 2018, 35(8):1151-1158. (in Chinese)
[20] Taisuke K, Kosuke S, Yasuhisa H, et al. Unified bipedal gait for autonomous transition between walking and running in pursuit of energy minimization[J]. Robotics and Autonomous Systems, 2018, 103(2018):27-41.
[21] Christie M D, Sun S, Ning D H. A highly stiffness-adjustable robot leg for enhancing locomotive performance[J]. Mechanical Systems and Signal Processing, 2019, 126(2019):458-468.
[22] Hao M, Chen K, Fu C L. Effects of hip torque during step-to-step transition on center-of-mass dynamics during human walking examined with numerical simulation[J]. Journal of Biomechanics, 2019, 90(2019):33-39.
[23] 张奇志, 周亚丽. 机器人学简明教程[M]. 西安:西安电子科技大学出版社, 2013:58-59. Zhang Qizhi, Zhou Yali. A brief course in robotics[M]. Xi'an:Xi'an University of Electronic Science and Technology Press, 2013:58-59. (in Chinese)
[24] Westervelt E R, Buche G, Grizzle J W. Experimental Validation of a Framework for the Design of Controllers that Induce Stable Walking in Planar Bipeds[J]. The International Journal of Robotics Research, 2004, 23(6):559-582.
[1] 李银山, 韦炳威, 李彤, 贾佩星. 复杂载荷下变刚度超静定梁快速解析求解[J]. 工程力学, 2016, 33(增刊): 33-38,55.
[2] 韦凯, 杨帆, 王平, 张攀. 扣件胶垫刚度频变的车辆-轨道耦合时变随机振动扩展辛分析[J]. 工程力学, 2016, 33(12): 232-240.
[3] 李银山, 官云龙, 李彤, 李欣业. 求解变截面梁变形的快速解析法[J]. 工程力学, 2015, 32(增刊): 116-121,141.
[4] 张微,丁千. 直齿圆柱齿轮啮合耦合振动系统参数振动研究[J]. 工程力学, 2015, 32(5): 213-220.
[5] 姜浩, 徐明. 碎石料应力路径大型三轴试验的离散元模拟研究[J]. 工程力学, 2014, 31(10): 151-157,180.
[6] 张奇志,周亚丽. 双足机器人半被动行走固定点全局稳定性分析[J]. 工程力学, 2013, 30(3): 431-436.
[7] 魏永祥,陈建军,马洪波. 随机参数齿轮系统的非线性动力响应分析[J]. 工程力学, 2012, 29(11): 319-324.
[8] 赵新华;段广仁;孙 尧. 时滞超空泡航行体复杂控制系统设计[J]. 工程力学, 2011, 28(9): 234-239.
[9] 陈哲明;曾 京. 牵引电机转子振动对高速列车动力学性能的影响[J]. 工程力学, 2011, 28(1): 238-244.
[10] 张奇志;戈新生. 基于样条逼近的欠驱动航天器姿态运动规划[J]. 工程力学, 2010, 27(1): 246-249,.
[11] 戈新生;吕 杰. 带有万向联轴节双刚体航天器姿态运动的最优控制[J]. 工程力学, 2009, 26(9): 201-207,.
[12] 郭益深;陈 力. 漂浮基双臂空间机器人惯性空间轨迹跟踪的拟增广自适应控制[J]. 工程力学, 2008, 25(1): 0-228.
[13] 成世峰;张玉良;张铜生. 变刚度钢管混凝土短柱隔震装置滞回曲线的研究[J]. 工程力学, 2006, 23(S1): 117-121.
[14] 秦士洪;杨鸿飞;黄音;李唐宁. 基于变刚度的协调扭转分析方法及应用[J]. 工程力学, 2006, 23(8): 25-30,3.
[15] 李学军;朱萍玉;刘义伦. 复杂载荷下变刚度静不定梁程序化求解[J]. 工程力学, 2003, 20(4): 116-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
[2] 田力;高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究[J]. 工程力学, 2011, 28(11): 114 -123 .
[3] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[4] 李皓玉;杨绍普;齐月芹;徐步青. 移动随机荷载下沥青路面的动力学特性和参数影响分析[J]. 工程力学, 2011, 28(11): 159 -165 .
[5] 赵同峰;欧阳伟;郝晓彬. 方钢管钢骨高强混凝土压弯剪承载力分析[J]. 工程力学, 2011, 28(11): 153 -158, .
[6] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[7] 罗尧治;刘海锋;娄荣. 考虑焊接球节点变形的网壳结构多尺度有限元分析方法[J]. 工程力学, 2011, 28(11): 190 -196, .
[8] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[9] 王进廷;张楚汉;金峰. 有阻尼动力方程显式积分方法的精度研究[J]. 工程力学, 2006, 23(3): 1 -5 .
[10] 熊铁华;常晓林. 响应面法在结构体系可靠度分析中的应用[J]. 工程力学, 2006, 23(4): 58 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日