工程力学 ›› 2019, Vol. 36 ›› Issue (12): 121-133.doi: 10.6052/j.issn.1000-4750.2018.12.0713

• 土木工程学科 • 上一篇    下一篇

带圆弓形脱空缺陷的钢管混凝土构件在压弯扭复合受力作用下的滞回性能试验研究

张伟杰1, 廖飞宇1, 李威2   

  1. 1. 福建农林大学交通与土木工程学院, 福建, 福州 350108;
    2. 清华大学土木工程系, 北京 100084
  • 收稿日期:2018-12-29 修回日期:2019-06-03 出版日期:2019-12-25 发布日期:2019-06-14
  • 通讯作者: 廖飞宇(1978-),男,福建人,教授,博士,博导,主要从事钢-混凝土组合结构研究(E-mail:feiyu.liao@fafu.edu.cn). E-mail:feiyu.liao@fafu.edu.cn
  • 作者简介:张伟杰(1988-),男,山西人,博士生,主要从事钢-混凝土组合结构研究(E-mail:1215204699@qq.com);李威(1984-),男,福建人,副教授,博士,博导,主要从事钢-混凝土组合结构研究(E-mail:iliwei@tsinghua.edu.cn).
  • 基金资助:
    国家自然科学基金面上项目(51578154,51878176);福建省科技厅高校产学研合作项目(2018H6005)

EXPERIMENTAL STUDY ON THE CYCLIC BEHAVIOR OF CONCRETE-FILLED STEEL TUBULAR (CFST) MEMBERS WITH CIRCULAR-SEGMENT GAPS UNDER COMBINED COMPERSSION-BENDING-TORSION LOADING

ZHANG Wei-jie1, LIAO Fei-yu1, LI Wei2   

  1. 1. College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350108, China;
    2. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-12-29 Revised:2019-06-03 Online:2019-12-25 Published:2019-06-14

摘要: 为研究圆弓形脱空缺陷对钢管混凝土试件在压弯扭复合受力作用下抗震性能的影响,进行了16个钢管混凝土试件(包括8个带脱空缺陷试件、6个无脱空试件和2个空钢管对比试件)在恒定轴压力和反复弯扭耦合荷载作用下的滞回试验,主要试验参数为:脱空率、轴压比和弯扭比。基于试验结果,考察了脱空缺陷对钢管混凝土压弯扭试件破坏模态、滞回曲线、骨架曲线、刚度退化、耗能能力和应变发展等的影响,结果表明:圆弓形脱空缺陷对钢管混凝土试件滞回曲线的形状影响不大,但会导致其达到极限荷载后的强化段刚度有所降低。试件的承载力、刚度和耗能能力均随着脱空率的增大而有所降低。变化轴压比对带缺陷试件的力学性能影响并不显著,而随着弯扭比的增大,脱空缺陷对试件极限承载力、刚度和耗能能力的影响有趋于显著的趋势,表明相较于受扭作用,脱空对钢管混凝土受弯性能的影响更为显著。

关键词: 钢管混凝土, 脱空缺陷, 压弯扭复合受力, 滞回性能, 耗能

Abstract: In order to study the effect of circular-segment gap on the seismic behavior of concrete-filled steel tubular (CFST) members subjected to combined compression-bending-torsion loadings were studied. A total of 16 specimens were tested under constant axial compressive loads and cyclically combined bending and torsion. The tests included eight CFST specimens with circular-segment gaps, six CFST specimens without gaps and two specimens of hollow steel sections. The examined testing parameters included the gap ratio, the axial load level and the bending-torsion ratio. Based on the test results, the effects of circular-segment gap on the failure mode, load versus displacement hysteretic curves, envelope curves, stiffness degradation, energy dissipation and strain development of the CFST specimens were studied. It was found that, the existence of the circular-segment gap had little influence on the shape of the hysteretic curve, whereas it tended to cause a decreased stiffness at the hardening stage of the curve after the ultimate strength was achieved. The ultimate strength, stiffness and energy dissipation ability of the CFST specimens tended to decrease with the increase in the gap ratio. The effect of changing axial load level on the behaviour of CFSTs with gaps was not significant, where the effect of gapson the ultimate strength, stiffness and energy dissipation tended to be more severe with the increase in the bending-torsion ratio. It indicates that the influence of gapson the flexural behavior was more significant than the torsional behaviour of the CFST member.

Key words: concrete-filled steel tube (CFST), circular-segment gap, compression-bending-torsion combined loading, cyclic behaviour, dissipated energy

中图分类号: 

  • TU398.9
[1] 韩林海. 钢管混凝土结构-理论与实践[M]. 第三版. 北京:科学出版社, 2016:30-66, 281-286. Han Linhai. Concrete filled steel tubular structurestheory and practice[M]. 3rd ed. Beijing:Science Press, 2016:30-66, 281-286. (in Chinese)
[2] 史艳莉, 周绪红, 鲜威, 等. 无端板矩形钢管混凝土构件基本剪切性能研究[J]. 工程力学, 2018, 35(12):25-33. Shi Yanli, Zhou Xuhong, Xian Wei, et al. Research on basic shear performance of concrete filled rectangular steel tubular members without end-plate[J]. Engineering Mechanics, 2018, 35(12):25-33. (in Chinese)
[3] 陈宝春, 韦建刚, 周俊, 等. 我国钢管混凝土拱桥应用现状及展望[J]. 土木工程学报, 2017, 50(6):50-61. Chen Baochun, Wei Jiangang, Zhou Jun, et al. Application of concrete filled steel tube arch bridges in China:current status and prospects[J]. China Civil Engineering Journal, 2017, 50(6):50-61. (in Chinese)
[4] 柯晓军, 苏益声, 商效瑀, 等. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12):134-142. Ke Xiaojun, Su Yisheng, Shang Xiaoyu, et al. Strength calculation and eccentric compressive test of steel tube-reinforced concrete composite columns[J]. Engineering Mechanics, 2018, 35(12):134-142. (in Chinese)
[5] Liao F Y, Han L H, He S H. Behavior of CFST short column and beam with initial concrete imperfection:Experiments[J]. Journal of Constructional Steel Research, 2011, 67(12):1922-1935.
[6] 邵志向, 任更锋, 房永祥. 有脱空缺陷钢管混凝土补强技术分析[J]. 广西大学学报(自然科学版), 2018, 43(1):126-131. Shao Zhixiang, Ren Gengfeng, Fang Yongxiang. Reinforce technical analysis of concrete-filled steel tube with cementation deviating[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(1):126-131. (in Chinese)
[7] 徐礼华, 宋杨, 刘素梅, 等. 多腔式多边形钢管混凝土柱偏心受压承载力研究[J]. 工程力学, 2019, 36(4):135-146. Xu Lihua, Song Yang, Liu Sumeiet, et al. Study on the eccentric compressive bearing capacity of polygonal multi-cell concrete filled steel tubular columns[J]. Engineering Mechanics, 2019, 36(4):135-146. (in Chinese)
[8] Liao F Y, Han L H, Tao Z. Behavior of CFST stub columns with initial concrete imperfection:analysis and calculations[J]. Thin-Walled Structures, 2013, 70(13):57-69.
[9] Han L H, Ye Y, Liao F Y. Effects of core concrete initial imperfection on performance of eccentrically loaded CFST columns[J]. Journal of Structural Engineering, ASCE, 2016, 142(12):04016132.
[10] 韩浩, 廖飞宇, 李永进. 脱空缺陷对钢管混凝土滞回性能的影响分析[J]. 工业建筑, 2017, 47(9):146-151. Han Hao, Liao Feiyu, Li Yongjin. Effect of spherical-cap gap on hysteretic behaviour of concrete-filled steel tubular columns[J]. Industrial Construction, 2017, 47(9):146-151. (in Chinese)
[11] 王宇航, 郭一帆, 刘界鹏, 等. 偏压荷载下钢管混凝土柱的抗扭性能试验研究[J]. 土木工程学报, 2017, 50(7):50-61. Wang Yuhang, Guo Yifan, Liu Jiepeng, et al. Experimental study on behaviour of concrete filled steel tube columns under torsion and eccentric compression[J]. China Civil Engineering Journal, 2017, 50(7):50-61. (in Chinese)
[12] 马恺泽, 梁兴文, 李斌. 高轴压比方钢管高强混凝土柱抗震性能研究[J]. 工程力学, 2010, 27(3):155-162. Ma Kaize, Liang Xingwen, Li Bin. Aseismic behavior of high strength concrete-filled rectangular steel tubular columns with high axial load ratio[J]. Engineering Mechanics, 2010, 27(3):155-162. (in Chinese)
[13] Wang J F, Zhang L, Spencer J BF. Seismic response of extended end plate joints to concrete-filled steel tubular columns[J]. Engineering Structures, 2013, 49(4):876-892.
[14] Tu Y Q, Shen Y F, Zeng Y G, et al. Hysteretic behavior of multi-cell T-Shaped concrete-filled steel tubular columns[J]. Thin-Walled Structures, 2014, 85(11):106-116.
[15] Liu C Y, Wang Y Y, Wang W, et al. Seismic performance and collapse prevention of concrete-filled thin-walled steel tubular arches[J]. Thin-Walled Structures, 2014, 80(6):91-102.
[16] 陈宗平, 张向冈, 薛建阳, 等. 圆钢管再生混凝土柱抗震性能与影响因素分析[J]. 工程力学, 2016, 33(6):129-137. Chen Zongping, Zhang Xianggang, Xue Jianyang, et al. Analysis on aseismic performance and influence factors of recycled concrete filled circular steel-tube columns[J]. Engineering Mechanics, 2016, 33(6):129-137. (in Chinese)
[17] 范重, 王倩倩, 李振宝, 等. 大直径钢管混凝土柱抗震性能试验研究及承载力计算方法[J]. 建筑结构学报, 2017, 38(11):34-41. Fan Zhong, Wang Qianqian, Li Zhenbao, et al. Experimental study on seismic behavior of CFST columns with large diameter and calculation of bearing capacities[J]. Journal of Building Structures, 2017, 38(11):34-41. (in Chinese)
[18] 王成刚, 柳炳康, 周健, 等. 方钢管再生混凝土中长柱抗震性能试验研究[J]. 工业建筑, 2017, 47(4):159-165. Wang Chenggang, Liu Bingkang, Zhou Jian, et al. Experimental research on seismic behavior of slender square steel tubular columns filled with recycled aggregate concrete[J]. Industrical Construction, 2017, 47(4):159-165. (in Chinese)
[19] 罗金辉, 李元齐, 张元植, 等. 设分配梁与内环板传力构造的巨型钢管混凝土柱抗震性能试验研究[J]. 土木工程学报, 2018, 51(4):34-44. Luo Jinhui, Li Yuanqi, Zhang Yuanzhi, et al. Experimental study on seismic performance of giant CFT columns with distributive beam and inner diaphragms as load-transfer detailing[J]. China Civil Engineering Journal, 2018, 51(4):34-44. (in Chinese)
[20] Tang Y C, Li L J, Feng W X, et al. Study of seismic behavior of recycled aggregate concrete-filled steel tubular columns[J]. Journal of Constructional Steel Research, 2018, 148(9):1-15.
[21] 董宏英, 谢翔, 曹万林, 等. 圆钢管再生混凝土柱抗震性能试验[J]. 天津大学学报(自然科学与技术版), 2018, 51(10):1096-1106. Dong Hongying, Xie Xiang, Cao Wanlin, et al. Experimental on seismic performance of recycled aggregate concrete filled circular steel tube columns[J]. Journal of Tianjin University(Science and Technology), 2018, 51(10):1096-1106. (in Chinese)
[22] Wang J T, Sun Q, Li J X. Experimental study on seismic behavior of high-strength circular concrete-filled thin-walled steel tubular columns[J]. Engineering Structures, 2019, 182(3):403-415.
[23] 聂建国, 王宇航, 樊建生. 钢管混凝土柱在纯扭和压扭荷载下抗震性能研究[J]. 土木工程学报, 2014, 47(1):47-58. Nie Jiangguo, Wang Yuhang, Fan Jiansheng. Study on seismic behavior of concrete filled steel tube columns under pure torsion and compression-torsion combined action[J]. China Civil Engineering Journal, 2014, 47(1):47-58. (in Chinese)
[24] Nie J G, Wang Y H, Fan J S. Experimental research on concrete filled steel tube columns under combined compression-bending-torsion cyclic load[J]. ThinWalled Structures, 2013, 67(2):1-14.
[25] Wang Y H, Zhou X H. Non-linear torsion behaviour of concrete filled steel tube columns[J]. Materials and Structures, 2016, 49(12):5227-5241.
[26] Wang Y H, Nie J G, Fan J S. Fiber beam-column element for circular concrete filled steel tube under axial-flexure-torsion combined load[J]. Journal of Constructional Steel Research, 2014, 95(4):10-21.
[27] 尧国皇. 钢管混凝土构件在复杂受力状态下的工作机理研究[D]. 福州:福州大学, 2006:195-202, 237-242. Yao Guohuang. Reasarch on behaiour of concrete-filled steel tubes subjected to complicated loading states[D]. Fuzhou:Fuzhou University, 2006:195-202, 237-242. (in Chinese)
[28] Liao F Y, Han L H, Tao Z. Behavior of composite joints with concrete encased CFST columns under cyclic loading:Experiments[J]. Engineering Structures, 2014, 59(2):745-764.
[29] 唐九如. 钢筋混凝土框架节点抗震[M]. 南京:东南大学出版社, 1989:311-316. Tang Jiuru. Seismic Joints of concrete filled steel framework[M]. Nanjing:Southeast University Press, 1989:311-316. (in Chinese)
[1] 代鹏, 杨璐, 卫璇, 周宇航. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(S1): 298-305.
[2] 张浩, 连鸣, 苏明周, 程倩倩, 关彬林. 含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(S1): 78-85.
[3] 谢启芳, 张利朋, 王龙, 崔雅珍, 杨柳洁. 拔榫状态下直榫节点滞回性能有限元分析[J]. 工程力学, 2019, 36(S1): 138-143.
[4] 关少钰, 白涌滔, 刘卫辉, 李银胜, 王伟. 基于统一强度理论的高强钢管混凝土柱压弯屈服准则[J]. 工程力学, 2019, 36(S1): 170-174,183.
[5] 王宇航, 王雨嫣, 胡少伟. 海洋结构CFRP环向约束钢管混凝土柱在压弯扭荷载下的力学性能研究[J]. 工程力学, 2019, 36(8): 96-105.
[6] 武海鹏, 曹万林, 董宏英. 基于“统一理论”的异形截面多腔钢管混凝土柱轴压承载力计算[J]. 工程力学, 2019, 36(8): 114-121.
[7] 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141-148.
[8] 杨勇, 孙东德, 张超瑞, 薛亦聪, 陈阳, 于云龙. 钢管高强混凝土叠合构件受剪承载能力试验研究[J]. 工程力学, 2019, 36(8): 182-191.
[9] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式钢管混凝土格构柱拟动力试验研究[J]. 工程力学, 2019, 36(7): 67-78.
[10] 赵必大, 蔡扬政, 王伟. 支主管夹角对X形圆钢管节点平面外受弯性能影响[J]. 工程力学, 2019, 36(7): 99-108.
[11] 刘嘉琳, 徐龙河. 带自复位耗能支撑钢板剪力墙墙板受力性能研究[J]. 工程力学, 2019, 36(7): 156-164.
[12] 王威, 刘格炜, 苏三庆, 张龙旭, 任英子, 王鑫. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197-206,226.
[13] 王宝顺, 闫维明, 何浩祥, 许维炳. 考虑摩擦效应的颗粒阻尼器力学模型研究及参数分析[J]. 工程力学, 2019, 36(6): 109-118.
[14] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[15] 杨俊芬, 程锦鹏, 翟伟, 张文喆. 内填脱硫石膏砌块墙体的新型装配式钢框架抗震性能研究[J]. 工程力学, 2019, 36(6): 147-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[2] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[3] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[4] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[8] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[9] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[10] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日