工程力学 ›› 2019, Vol. 36 ›› Issue (12): 106-112,144.doi: 10.6052/j.issn.1000-4750.2018.12.0703

• 土木工程学科 • 上一篇    下一篇

装配式干式连接剪力墙结构中楼板性能试验研究

苏宇坤1, 沈绍冬2, 龚润华2, 王海深2, 潘鹏2,3   

  1. 1. 北京市建筑设计研究院有限公司, 北京 100045;
    2. 清华大学土木工程系, 北京 100084;
    3. 清华大学土木工程安全与耐久教育部重点试验室, 北京 100084
  • 收稿日期:2018-12-25 修回日期:2019-05-15 出版日期:2019-12-25 发布日期:2019-06-06
  • 通讯作者: 潘鹏(1976-),男,湖北黄冈人,教授,博士,主要从事工程结构抗震研究(E-mail:panpeng@tsinghua.edu.cn). E-mail:panpeng@tsinghua.edu.cn
  • 作者简介:苏宇坤(1990-),男,福建厦门人,工程师,硕士生,主要从事工程结构抗震等方面研究(E-mail:syk2182857@126.com);沈绍冬(1993-),男,云南昆明人,博士生,主要从事工程结构抗震等方面研究(E-mail:ssd15@mails.tsinghua.edu.cn);龚润华(1994-),男,湖北黄冈人,硕士生,主要从事工程结构抗震等方面研究(E-mail:grh16@mails.tsinghua.edu.cn);王海深(1991-),男,河北泊头人,博士生,主要从事工程结构抗震等方面研究(E-mail:whs11thu@qq.com).
  • 基金资助:
    国家十三五重点研发计划课题项目(2016YFC0701901);清华大学互联网产业研究院资助项目(201702001)

EXPERIMENTAL STUDY ON FLOOR SLABS IN PREFABRICATED SHEAR WALL STRUCTURES USING DRY CONNECTIONS

SU Yu-kun1, SHEN Shao-dong2, GONG Run-hua2, WANG Hai-shen2, PAN Peng2,3   

  1. 1. Beijing Institute of Architectural Design, Beijing 100045, China;
    2. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
    3. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Tsinghua University, Beijing 100084, China
  • Received:2018-12-25 Revised:2019-05-15 Online:2019-12-25 Published:2019-06-06

摘要: 装配式剪力墙结构中存在大量竖向拼缝,竖向拼缝采用干式连接可减少现场湿作业,提升建筑装配率。竖向拼缝采用干式连接后,由于拼缝宽度较小,拼缝两侧的剪力墙相对变形较大,而楼板在竖向拼缝处通常保持连续,因此在地震作用下,竖向拼缝处楼板局部将受到较强的剪切作用而发生严重破坏。针对上述问题,提出一种带局部加强构造的楼板做法,通过试验研究楼板在干式连接拼缝处的破坏现象和机理,并与现浇剪力墙进行了对比。试验结果表明:对于带竖向拼缝的剪力墙,楼板表现出明显的剪切破坏特征,在无干式连接节点时,楼板局部破坏严重,大震后难以修复;采用干式连接后,墙体的承载力和延性均有提升。由于干式连接节点的贡献,墙肢间相对变形减小,楼板损伤程度较轻,大震后更容易修复。

关键词: 装配式建筑, 剪力墙结构, 干式连接, 加强楼板, 剪切破坏

Abstract: Vertical joints exist in a prefabricated shear wall structure, and using dry connections in prefabrication shear wall structures is appealing because it can avoid pouring concrete on site and increase the prefabrication ratio. In general, the joint width between the adjacent shear walls is small, and the deformation between the adjacent shear walls is relatively large if dry connections are adopted. On the other hand, the floor slabs are continuous at the joints. In this case, the slabs across the joint are easy to be damaged. Thusly, a construction detailing to strengthen the slab is proposed. Physical tests were carried out to investigate the damage characteristics and mechanism of the slab. The effects of the dry connection on the performance of the slab were also studied. The test results show that obvious shear failure occurs in the slab. It can be concluded from the tests that the damage in the slab of the slotted shear wall is severe and it is hard to be repaired. However, when the shear walls are connected by a dry connection, both strength and ductility can be improved. Moreover, the damage in the slab is less because the dry connections can decrease the relative deformation between adjacent shear walls. Then the slab can be repaired more easily after strong earthquakes.

Key words: prefabricated building, shear wall structure, dry connection, strengthened slab, shearing damage

中图分类号: 

  • TU375
[1] 王墩, 吕西林. 预制混凝土剪力墙结构抗震性能研究进展[J]. 结构工程师, 2010, 26(11):128-135. Wang Dun, Lü Xilin. Progress of study on seismic performance of precast concrete shear wall systems[J]. Structural Engineers, 2010, 26(11):128-135. (in Chinese)
[2] 郭正兴, 董年才, 朱张峰. 房屋建筑装配式混凝土结构建造技术新进展[J]. 施工技术, 2011, 40(342):1-2. Guo Zhengxing, Dong Niancai, Zhu zhangfeng. Development of construction technology of precast concrete structure in buildings[J]. Construction Technology, 2011, 40(342):1-2. (in Chinese)
[3] 陈再现, 姜洪斌, 张家齐, 等. 预制钢筋混凝土剪力墙结构拟动力子结构试验研究[J], 建筑结构学报, 2011, 32(6):41-50. Chen Zaixian, Jiang Hongbin, Zhang Jiaqi, et al. Pseudo-dynamic substructure test on precast reinforced concrete shear wall structure[J]. Journal of Building Structures, 2011, 32(6):41-50. (in Chinese)
[4] 范悦. 新时期我国住宅工业化的发展之路[J]. 上海房地, 2010, 10:14-16. Fan Yue. Chinese development path of housing industrialization in in new period of time[J]. Shanghai Real Estate, 2010, 10:14-16. (in Chinese)
[5] 钱稼茹, 彭媛媛, 张景明, 等. 竖向钢筋套筒浆锚连接的预制剪力墙抗震性能试验[J]. 建筑结构, 2011, 41(2):1-6. Qian Jiaru, Peng Yuanyuan, Zhang Jingming, et al. Tests on seismic behavior of pre-cast shear walls with vertical reinforcements spliced by grout sleeves[J]. Building Structure, 2011, 41(2):1-6. (in Chinese)
[6] 王啸霆. 新型装配式型钢剪力墙组合结构抗震性能研究[D]. 北京:北京建筑大学, 2013. Wang Xiaoting. Seismic behavior of precast SRC wall composite structure[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2013. (in Chinese)
[7] 种迅, 万金亮, 蒋庆, 等. 水平拼缝部位增强叠合板式剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(4):107-113. Chong Xun, Wan Jinliang, Jiang Qing, et al. Experimental study on aseismic performance of superimposed RC walls with enhanced horizontal joints[J]. Engineering Mechanics, 2018, 35(4):107-113. (in Chinese)
[8] JGJ 1-2014, 装配式混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2014. JGJ 1-2014, Technical specification for precast concrete structures[S]. Beijing:China Architecture & Building Press, 2014. (in Chinese)
[9] Priestley M J N, Sritharan S, Conley J R, et al. Preliminary results and conclusions from the presss five-story precast concrete test building[J]. PCI Journal, 1999, 44(6):42-67.
[10] Nakaki S D, Stanton J F, Sritharan S, et al. An overview of the PRESSS five-story precast test building[J]. PCI Journal, 1999, 44(2):26-39.
[11] Sritharan Sri, Sriram Aaleti, Henry Richard Stuart, et al. Precast concrete wall with end columns (PreWEC) for earthquake resistant design[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(12):2075-2092.
[12] 刘继新, 李文峰, 王啸霆, 等. 新型装配整体式墙体抗震性能试验研究[J]. 地震工程与工程振动, 2012, 32(6):110-118. Liu Jixin, Li Wenfeng, Wang Xiaoting, et al. Seismic behavior of a new assembled monolithic concrete wall structure[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(6):110-118. (in Chinese)
[13] 牟犇, 王玲玲, 张春巍, 等. 考虑楼板影响的外环板式梁柱节点抗震性能:试验研究[J]. 工程力学, 2018, 35(2):160-168, 213. Mou Ben, Wang Lingling, Zhang Chunwei, et al. A seismic performance of beam-to-column joints with external-diaphragm considering slab effect:Experimental investigation[J]. Engineering Mechanics, 2018, 35(2):160-168, 213. (in Chinese)
[14] Shen SD, Cui Y, Pan P, et al. Experimental study of RC prefabricated shear walls with shear keys affected by a slotted floor slab[J]. Journal of Aerospace Engineering-ASCE, 2019, 32(3):04019013.
[15] 邓开来, 潘鹏, 张东彬, 等. 开槽式钢筋混凝土楼板试验研究[J]. 建筑结构学报, 2016, 37(4):26-31. Deng Kailai, Pan Peng, Zhang Dongbin, et al. Experimental study of slotted reinforced concrete slab at shear wall-slab interface[J]. Journal of Building Structures, 2016, 37(4):26-31. (in Chinese)
[16] 邓付元, 纪晓东, 王涛, 等. 带楼板RC连梁抗震性能试验研究[J]. 工程力学, 2017(增刊), 34:54-58. Deng Fuyuan, Ji Xiaodong, Wang Tao, et al. Cyclic test on the seismic behavior of RC coupling beams with slabs[J]. Engineering Mechanics, 2017, 34(Suppl):54-58. (in Chinese)
[17] 沈绍冬, 李钢, 潘鹏. 屈曲约束支撑与黏滞阻尼器的减震效果对比研究[J]. 建筑结构学报, 2016, 37(9):33-42. Shen Shaodong, Li Gang, Pan Peng. Comparison on seismic response between structures using buckling restrained braces and viscous dampers[J]. Journal of Building Structures, 2016, 37(9):33-42. (in Chinese)
[18] Shen S D, Pan P, Sun J B et al. Development of a double-sliding friction damper (DSFD)[J]. Smart Structures and Systems, 2017, 20(2):151-162.
[19] Sritharan S, Aaleti S, Henry R S, et al. Precast concrete wall with end columns (PreWEC) for earthquake resistant design[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(12):2075-2092.
[20] 韦芳芳, 郑泽军, 喻君, 等. 基于钢板屈曲分析的双钢板-混凝土组合剪力墙轴压承载力计算方法[J]. 工程力学, 2019, 36(2):154-164. Wei Fangfang, Zheng Zejun, Yu Jun, et al. Computational method for axial compression capacity of double steel-concrete composite shear walls with consideration of buckling[J]. Engineering Mechanics, 2019, 36(2):154-164. (in Chinese)
[1] 乔崎云, 杨兆源, 牟犇, 刘倩倩. 外环板式高低梁-方钢管柱节点弹塑性剪切承载力计算[J]. 工程力学, 2019, 36(8): 192-200,209.
[2] 闫培雷, 孙柏涛. 基于环境激励法的高层钢筋混凝土剪力墙结构自振周期经验公式研究[J]. 工程力学, 2019, 36(2): 87-95.
[3] 侯和涛, 朱文灿, 曲哲, 崔士起. 屈曲约束支撑钢筋混凝土框架结构干式柔性梁柱节点的试验研究[J]. 工程力学, 2018, 35(6): 151-161.
[4] 颜欣桐, 徐龙河. 基于遗传算法的钢筋混凝土框架-剪力墙结构失效模式多目标优化[J]. 工程力学, 2018, 35(4): 69-77.
[5] 杨博雅, 吕西林. 预应力预制混凝土剪力墙结构直接基于位移的抗震设计方法及应用[J]. 工程力学, 2018, 35(2): 59-66,75.
[6] 钟阳龙, 高亮, 王璞, 梁淑娟. 温度荷载下CRTS II型轨道板与CA砂浆界面剪切破坏机理[J]. 工程力学, 2018, 35(2): 230-238.
[7] 朱元吉, 谢剑. 不同连接形式PC挂板-剪力墙抗震性能研究[J]. 工程力学, 2017, 34(增刊): 122-128.
[8] 张沛洲, 孙宝印, 古泉, 欧进萍. 基于数值子结构方法的低延性RC框架结构抗震性能精细化分析[J]. 工程力学, 2017, 34(增刊): 38-48.
[9] 任晓丹, 范伟达. 基于损伤模型的钢筋混凝土梁剪切破坏全过程分析[J]. 工程力学, 2017, 34(增刊): 139-142,148.
[10] 袁勇, 禹海涛, 萧文浩, 徐国平, 蒋至彦. 沉管隧道管节接头混凝土剪力键压剪破坏试验研究[J]. 工程力学, 2017, 34(3): 149-154,181.
[11] 马军卫, 潘金龙, 尹万云, 刘守城, 莫创. 灌浆套筒连接全装配式框架-剪力墙结构抗震性能试验研究[J]. 工程力学, 2017, 34(10): 178-187.
[12] 李明, 刘勇, 孙哲哲, 袁赫. 不同类型近断层脉冲型地震动对框架-剪力墙结构的影响[J]. 工程力学, 2015, 32(增刊): 294-297,303.
[13] 朱张峰, 郭正兴. 装配式混凝土剪力墙结构空间模型抗震性能试验[J]. 工程力学, 2015, 32(4): 153-159.
[14] 刘彦辉,谭平,周福霖,杜永峰,闫维明. 高层框架-剪力墙隔震结构地震响应研究[J]. 工程力学, 2015, 32(3): 134-139,224.
[15] 党争,梁兴文,邓明科. 考虑压-弯-剪相互作用的纤维混凝土剪力墙变形能力分析[J]. 工程力学, 2014, 31(1): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[2] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[3] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[4] 陈誉;刘飞飞. 正对称Pratt 桁架直腹杆受压大偏心N型圆钢管节点静力性能实验研究[J]. 工程力学, 2011, 28(11): 170 -177 .
[5] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[6] 王小兵;刘扬;崔海清;韩洪升. 螺旋流抑制杆管偏磨的PIV实验研究[J]. 工程力学, 2011, 28(11): 225 -230 .
[7] 郜新军;赵成刚;刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J]. 工程力学, 2011, 28(11): 237 -243 .
[8] 吕伟荣;王猛;刘锡军. 灌芯混凝土砌块砌体破坏准则研究[J]. 工程力学, 2011, 28(11): 251 -256 .
[9] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[10] 张嘎;张建民. 土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J]. 工程力学, 2006, 23(2): 72 -77 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日