工程力学 ›› 2019, Vol. 36 ›› Issue (12): 98-105.doi: 10.6052/j.issn.1000-4750.2018.12.0696

• 土木工程学科 • 上一篇    下一篇

钢筋粘结滑移弯矩-转角计算模型

熊能1, 顾冬生1,2   

  1. 1. 江南大学环境与土木工程学院, 江苏, 无锡 214122;
    2. 水利部堤防安全与病害防治工程技术研究中心, 河南, 郑州 450003
  • 收稿日期:2018-12-21 修回日期:2019-04-01 出版日期:2019-12-25 发布日期:2019-04-12
  • 通讯作者: 顾冬生(1978-),男,江苏射阳人,副教授,博士,主要从事混凝土结构抗震性能研究(E-mail:gussds@jiangnan.edu.cn). E-mail:gussds@jiangnan.edu.cn
  • 作者简介:熊能(1994-),男,湖南常德人,硕士生,主要从事混凝土结构抗震性能研究(E-mail:6161404011@vip.jiangnan.edu.cn).
  • 基金资助:
    水利部堤防安全与病害防治工程技术研究中心开放课题基金项目(2015005);江苏省自然科学基金项目(BK20131105)

A CALCULATION MODEL FOR THE SLIP MOMENT-ROTATION OF REINFORCEMENT BOND

XIONG Neng1, GU Dong-sheng1,2   

  1. 1. College of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China;
    2. Engineering Research Center of Embankment Safety and Disease Prevention and Control of Ministry of Water Resources, Zhengzhou, He'nan 450003, China
  • Received:2018-12-21 Revised:2019-04-01 Online:2019-12-25 Published:2019-04-12

摘要: 纵筋在梁-柱或基础-柱界面处滑移将使侧向变形出现显著的增加。该文在现有二折线型钢筋粘结滑移弯矩-转角骨架曲线基础上,提出了屈服点以及破坏点滑移转角计算方法,可以用于预测滑移造成的侧向变形。根据与相互独立的五批共24个圆柱试验结果对比,其计算结果具有较高的精度。在OpenSees软件中用基于力的纤维单元与粘结滑移弯矩-转角模型,对不同圆柱低周反复试验进行数值模拟,发现该模型计算结果与试验结果吻合很好。进一步,对圆柱在地震波作用下的振动台试验进行时程分析,柱顶位移和柱底滑移变形都能得到很好的预测。进行参数分析,结果表明极限点滑移量在总变形中的占比约为30%~40%,该占比随轴压比增加而减小,随体积配箍率减小而减小。

关键词: RC圆柱, 粘结滑移, 弯矩-转角, 混凝土柱变形, OpenSees

Abstract: The longitudinal reinforcement slip at the beam-column or footing-column interface significantly increases the lateral deformation. The envelope curve of the moment-rotation model caused by this slip is usually idealized as a bilinear curve. This study modified the bilinear curve and proposed the calculation model for slip rotation of yielding and failure points. Compared with the experimental results of 24 circular columns in five independent batches, the accuracy of the model was verified. This bond slip moment-rotation model was simulated in software OpenSees, and the force-based element was selected to model columns. The numerical simulation of cyclic tests of circular columns showed that the calculated results were in good agreement with the test results. Furthermore, time history analysis was conducted to simulate shake table test, and the results demonstrated that both top displacement and bottom slip rotation were well predicted. The results of parameter analysis showed that the ratio of slip deformation to total lateral deformation at the failure point was about 30%-40%, and both the increase in the column axial compression ratio and the decrease in the volume ratio of stirrups would reduce this ratio.

Key words: RC circular columns, bond slip, moment-rotation, deformation of concrete columns, OpenSees

中图分类号: 

  • TU375.3
[1] Sezen H. Seismic behavior and modeling of reinforced concrete building columns[D]. Berkeley, USA:University of California, 2002.
[2] Lehman D E, Moehle J P. Seismic performance of well-confined concrete bridge columns[R]. Berkeley:Pacific Earthquake Engineering Research Center, 1998.
[3] Sezen H, Setzler E J. Reinforcement slip in reinforced concrete columns[J]. Aci Structural Journal, 2008, 105(3):280-289.
[4] Zhao J, Sritharan S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. ACI Structural Journal, 2007, 104(2):133-141.
[5] Mazzoni S, McKenna F. Open system for earthquake engineering simulation user command-language manual[R]. Berkeley:Pacific Earthquake Engineering Research Center, 2006.
[6] Hachem M M, Mahin S A, Moehle J P. Performance of circular reinforced concrete bridge columns under bidirectional earthquake loading[R]. Berkeley:Pacific Earthquake Engineering Research Center, 2003.
[7] Haselton C B, Goulet C A, Mitrani-Reiser J, et al. An assessment to benchmark the seismic performance of a code-conforming reinforced concrete moment-frame building[R]. Berkeley:Pacific Earthquake Engineering Research Center, 2007.
[8] Calderone A, Lehman D E, Moehle J P. Behavior of reinforced concrete bridge columns having varying aspect ratios and varying lengths of confinement[R]. Berkeley:Pacific Earthquake Engineering Research Center, 2000.
[9] 李贵乾. 钢筋混凝土桥墩抗震性能试验研究及数值分析[D]. 重庆:重庆交通大学, 2010. Li Guiqian. Experimental study and numerical analysis on seismic performance of reinforced concrete bridge columns[D]. Chongqing:Chongqing Jiaotong University, 2010. (in Chinese)
[10] Naito C J, Moehle J P, Mosalam K M. Experimental and computational evaluation of reinforced concrete bridge beam-column connections for seismic performance[R]. Berkeley:Pacific Earthquake Engineering Research Center, 2001.
[11] Goodnight J C, Feng Y, Kowalsky M J, et al. The effects of load history and design variables on performance limit states of circular bridge columns[D]. Raleigh, USA:North Carolina State University, 2015.
[12] Priestley M J N, Calvi G M, Kowalsky M J. Displacement-based seismic design of structures[M]. Pavia, Italy:IUSS Press, 2007.
[13] Goodnight J C, Kowalsky M J, Nau J M. Modified plastic-hinge method for circular RC bridge columns[J]. Journal of Structural Engineering, ASCE, 2016,142(11):04016103-1-04016103-12.
[14] 顾冬生, 吴刚, 吴智深. RC圆柱受弯承载力极限值计算方法研究[J]. 工程力学, 2012, 29(8):227-235. Gu Dongsheng, Wu Gang, Wu Zhishen. Calculation of the ultimate flexural capacity of normal section of RC circular columns[J]. Engineering Mechanics, 2012, 29(8):227-235. (in Chinese)
[15] 顾冬生, 吴刚, 吴智深. 钢筋混凝土圆柱正截面受弯承载力计算方法研究[J].建筑结构, 2010, 40(10):97-101. Gu Dongsheng, Wu Gang, Wu Zhishen. Analysis on calculation method for normal section flexural capacity of reinforced concrete circular columns[J]. Building Structure, 2010, 40(10):97-101. (in Chinese)
[16] 骆欢, 杜轲, 孙景江, 等. 小跨高比钢筋混凝土连梁非线性剪切滞回和分析模型研究[J]. 工程力学, 2018, 35(9):161-169, 179. Luo Huan, Du Ke, Sun Jingjiang, et al. Hysteretic shear and analysis models for reinforced concrete coupling beams with small span-to-depth ratios[J]. Engineering Mechanics, 2018, 35(9):161-169, 179. (in Chinese)
[17] Su J, Dhakal R P, Wang J. Fiber-based damage analysis of reinforced concrete bridge piers[J]. Soil Dynamics and Earthquake Engineering, 2017, 96(5):13-34.
[18] Wu R Y, Pantelides C P. Concentrated and distributed plasticity models for seismic repair of damaged RC bridge columns[J]. Journal of Composites for Construction, 2018, 22(5):04018044-1-04018044-15.
[19] 孙小云, 韩建平, 党育, 等. 地震动持时对考虑梁柱节点区不同破坏模式RC框架的地震易损性影响[J]. 工程力学, 2018, 35(5):193-203. Sun Xiaoyun, Han Jianping, Dang Yu, et al. Effect of ground motion duration on seismic fragility of RC frames with different beam-column joint failure modes[J]. Engineering Mechanics, 2018, 35(5):193-203. (in Chinese)
[20] Petrini L, Maggi C, Priestley M J N, et al. Experimental verification of viscous damping modeling for inelastic time history analyzes[J]. Journal of Earthquake Engineering, 2008, 12(Suppl 1):125-145.
[21] Berry M P, Eberhard M O. Performance modeling strategies for modern reinforced concrete bridge columns[R]. Berkeley:Pacific Earthquake Engineering Research Center, 2007.
[22] Goulet C A, Haselton C B, Mitrani-Reiser J, et al. Evaluation of the seismic performance of a codeconforming reinforced-concrete frame building-from seismic hazard to collapse safety and economic losses[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(13):1973-1997.
[1] 王威, 赵春雷, 苏三庆, 任坦, 刘格炜, 董晨阳. 带栓钉波形钢板混凝土组合构件粘结滑移性能与承载力试验研究[J]. 工程力学, 2019, 36(9): 108-119.
[2] 梁兴文, 王莹, 于婧, 李林. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析[J]. 工程力学, 2019, 36(7): 146-155.
[3] 古泉, 张宁, 郑越. 高延性纤维增强水泥基复合材料(ECC)连续梁模型在地震荷载下的响应及其敏感性分析[J]. 工程力学, 2019, 36(6): 157-163,182.
[4] 周凌宇, 薛宪鑫. 外接式组合桁架节点初始转动刚度研究[J]. 工程力学, 2019, 36(5): 100-109.
[5] 杨慧, 何浩祥, 闫维明. 锈蚀和疲劳耦合作用下梁桥时变承载力评估[J]. 工程力学, 2019, 36(2): 165-176.
[6] 阿斯哈, 周长东, 邱意坤, 梁立灿, 张泳. 考虑位置函数的木材表面嵌筋粘结滑移本构关系[J]. 工程力学, 2019, 36(10): 134-143.
[7] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[8] 国巍, 李君龙, 刘汉云. 强地震下高速铁路桥上行车精细化模拟及行车安全性分析[J]. 工程力学, 2018, 35(S1): 259-264,277.
[9] 骆欢, 杜轲, 孙景江, 丁宝荣. 小跨高比钢筋混凝土连梁非线性剪切滞回和分析模型研究[J]. 工程力学, 2018, 35(9): 161-169,179.
[10] 张磊鑫, 龙晓鸿, 樊剑, 陈蓓蕾. 考虑碰撞的隔震桥梁易损性分析[J]. 工程力学, 2017, 34(增刊): 99-104.
[11] 祝双, 张沛洲, 古泉, 欧进萍. 基于OpenSees的钢筋混凝土梁粘结滑移数值分析[J]. 工程力学, 2017, 34(增刊): 263-268.
[12] 陈学森, 施刚, 赵俊林, 郁汉明, 魏东. 基于组件法的超大承载力端板连接节点弯矩-转角曲线计算方法[J]. 工程力学, 2017, 34(5): 30-41.
[13] 骆欢, 杜轲, 孙景江, 丁宝荣. 联肢剪力墙非线性分析模型研究及数值模拟验证[J]. 工程力学, 2017, 34(4): 140-149, 159.
[14] 司炳君, 谷明洋, 孙治国, 杜敏. 近断层地震动下摇摆-自复位桥墩地震反应分析[J]. 工程力学, 2017, 34(10): 87-97.
[15] 谢启芳, 杜彬, 钱春宇, 郑培君, 李双, 张风亮. 古建筑木结构燕尾榫节点弯矩-转角模型研究[J]. 工程力学, 2016, 33(8): 39-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[2] 熊铁华;常晓林. 响应面法在结构体系可靠度分析中的应用[J]. 工程力学, 2006, 23(4): 58 -61 .
[3] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[4] 曹晖;Michael I. Friswell. 基于模态柔度曲率的损伤检测方法[J]. 工程力学, 2006, 23(4): 33 -38 .
[5] 王兵;张会强;王希麟. 亚格子尺度湍流特性研究[J]. 工程力学, 2006, 23(2): 47 -51 .
[6] 李冀龙;欧进萍. 铅剪切阻尼器的阻尼力模型与设计[J]. 工程力学, 2006, 23(4): 67 -73 .
[7] 王元清;武延民;石永久;江见鲸. 温度对结构钢材裂纹尖端张开位移(CTOD)的影响分析[J]. 工程力学, 2006, 23(4): 74 -78 .
[8] 苏霞;李仲奎. 锚杆拉拔力影响因素的数值试验研究[J]. 工程力学, 2006, 23(2): 97 -102 .
[9] 吕震宙;冯蕴雯. 含非闭合隶属函数模糊变量的结构失效概率分布研究[J]. 工程力学, 2006, 23(3): 99 -103, .
[10] 王学滨. 岩样单轴压缩峰后泊松比理论研究[J]. 工程力学, 2006, 23(4): 99 -103 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日