工程力学 ›› 2019, Vol. 36 ›› Issue (12): 79-89.doi: 10.6052/j.issn.1000-4750.2018.12.0684

• 土木工程学科 • 上一篇    下一篇

窗下墙对自保温暗骨架承重墙抗震性能的影响研究

刘康1, 王少杰1, 刘福胜1, 费忠宇1, 黄兴淮2, 倪韦斌1   

  1. 1. 山东农业大学水利土木工程学院, 山东, 泰安 271018;
    2. 东南大学土木工程学院, 江苏, 南京 210096
  • 收稿日期:2018-12-20 修回日期:2019-03-28 出版日期:2019-12-25 发布日期:2019-04-03
  • 通讯作者: 王少杰(1985-),男,安徽宿州人,副教授,工学博士,主要从事结构安全与防灾等领域的研究(E-mail:tumuwsj@sdau.edu.cn). E-mail:tumuwsj@sdau.edu.cn
  • 作者简介:刘康(1992-),男,山东济宁人,硕士生,主要从事结构抗震研究(E-mail:tumulkang@163.com);刘福胜(1964-),男,山东潍坊人,教授,博导,主要从事结构工程、工程力学等研究(E-mail:liufsh@sdau.edu.cn);费忠宇(1996-),男,山东枣庄人,硕士生,主要从事结构工程研究(E-mail:feizhongyu123@163.com);黄兴淮(1986-),男,江苏淮安人,讲师,工学博士,主要从事结构抗震与振动控制研究(E-mail:huangxh@seu.edu.cn);倪韦斌(1994-),男,江苏宿迁人,硕士生,主要从事结构抗震研究(E-mail:1145938645@qq.com).
  • 基金资助:
    山东省自然科学基金项目(ZR2017BEE022);国家自然科学基金项目(51708115);中国博士后科学基金面上项目(2017M622239);山东省高等学校科技计划项目(J17KA219)

INFLUENCE OF SPANDREL WALLS ON SEISMIC PERFORMANCE OF SELF-INSULATING STRUCTURAL WALLS WITH AN INNER SKELETON

LIU Kang1, WANG Shao-jie1, LIU Fu-sheng1, FEI Zhong-yu1, HUANG Xing-huai2, NI Wei-bin1   

  1. 1. College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China;
    2. College of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2018-12-20 Revised:2019-03-28 Online:2019-12-25 Published:2019-04-03

摘要: 采用低周往复荷载试验研究窗下墙对自保温暗骨架承重墙抗震性能的影响,结果表明:窗下墙对自保温暗骨架承重墙的滞回曲线、骨架曲线、刚度及其退化、耗能能力等均存在显著影响;试验墙体失效破坏全过程均呈“共同工作、转化过渡和弱框架工作”三阶段特征,恰与我国抗震设防目标相对应;均系延性破坏,对应延性系数分别为3.034、3.545。理论方面:基于等效弹性板模型,分别根据最大拉应力理论和双剪统一强度理论建立了墙体开裂荷载的计算方法;基于抗剪抵抗机构思想提出刚架斜压杆模型,并利用等效刚度法明晰了斜压杆宽度的确定方法,建立了墙体极限荷载计算方法;与实测值的对比表明,所建立的计算方法精度较高。最后,以建立的理论方法为基础,定量评价了窗下墙对墙体抗震承载力的直接和间接作用。研究结果可为带门窗洞口的自保温暗骨架承重墙抗震承载力计算提供方法。

关键词: 自保温暗骨架承重墙, 窗下墙, 等效弹性板模型, 刚架斜压杆模型, 抗震试验

Abstract: The effect of spandrel walls on the seismic performance of self-insulating structural walls with an inner skeleton (SSWIS) was studied by low-cycle reciprocating load tests. The results showed that the hysteretic curve, skeleton curve, stiffness and its degradation, and energy dissipation capacity of the SSWIS were significantly affected by the spandrel wall. The failure process of the SSWIS was characterized by three stages:co-work, transformation transition and weak frame work, which matched the national anti-seismic goal. Both of the two specimens, W1 and W2, showed ductile failure with the ductility coefficient being 3.034 and 3.545 respectively. In addition, based on the equivalent elastic plate model, the calculation methods of cracking load of the walls were established respectively by using the maximum tensile stress theory and the unified strength theory of double shear. The rigid frame diagonal compression bar model was proposed based on shear resistance mechanism. The method for determining the width of diagonal compression bars was specified by the equivalent stiffness method. Calculation of the SSWIS ultimate load was established. Comparison with the measured values showed that the calculation method was effective. Finally, based on the established theoretical method, the direct and indirect effects of the spandrel wall on the seismic bearing capacity of SSWIS were quantitatively evaluated. This study is expected to provide a method for calculating the seismic bearing capacity of the SSWIS with doors or windows.

Key words: self-insulating structural wall with inner skeleton, spandrel wall, equivalent elastic plate model, baroclinic bar model of rigid frame, seismic experiment

中图分类号: 

  • TU365
[1] 清华大学、西南交通大学、北京交通大学土木工程结构专家组. 汶川地震建筑震害分析[J]. 建筑结构学报, 2008, 29(4):1-9. Civil and Structural Groups of Tsinghua University, Xinan Jiaotong University and Beijing Jiaotong University. Analysis on seismic damage of buildings in the Wenchuan earthquake[J]. Journal of Building Structures, 2008, 29(4):1-9. (in Chinese)
[2] 邓明科, 杨铄, 王露. 高延性混凝土加固无筋砖墙抗震性能试验研究与承载力分析[J]. 工程力学, 2018, 35(10):101-111, 123. Deng Mingke, Yang Shuo, Wang Lu. Experimental and bearing capacity studies on the seismic behavior of unreinforced masonry walls strengthened with HDC layers[J]. Engineering Mechanics, 2018, 35(10):101-111, 123. (in Chinese)
[3] 刘福胜, 王少杰. 混凝土夹心秸秆砌块抗震节能生态宜居村镇建筑[M]. 北京:中国建材工业出版社, 2018:168-179. Liu Fusheng, Wang Shaojie. Concrete sandwich straw block earthquake-resistant energy-saving ecological livable village and town buildings[M]. Beijing:China Building Materials Press, 2018:168-179. (in Chinese)
[4] Hou S D, Liu F S, Wang S J, et al. Coupled heat and moisture transfer in hollow concrete block wall filled with compressed straw bricks[J]. Energy and Buildings, 2017, 135:74-84.
[5] Zhao B, Taucer F, Rossetto T. Field investigation on the performance of building structures during the 12 May 2008 Wenchuan earthquake in China[J]. Engineering Structures, 2009, 31(8):1707-1723.
[6] 姚新强, 孙柏涛, 王明振, 等. 我国农村典型砖砌体墙片拟静力试验研究[J]. 工程力学, 2017, 34(6):198-209. Yao Xinqiang, Sun Baitao, Wang Mingzhen, et al. Study on the pseudo-static tests of typical brick masonry walls in rural China[J]. Engineering Mechanics, 2017, 34(6):198-209. (in Chinese)
[7] Sharma K, Deng L, Noguez C C. Field investigation on the performance of building structures during the April 25, 2015, Gorkha earthquake in Nepal[J]. Engineering Structures, 2016, 121:61-74.
[8] 郭猛, 徐福泉, 朱莹, 等. 拆除窗下墙对砌体墙抗震性能影响的试验研究[J]. 建筑结构学报, 2014, 35(8):120-126. Guo Meng, Xu Fuquan, Zhu Ying, et al. Experimental research on seismic performance influence of masonry wall removed spandrel wall[J]. Journal of Building Structures, 2014, 35(8):120-126. (in Chinese)
[9] 信任, 姚继涛, 吴梦溪, 等. 无筋砌体结构窗下墙抗震性能拟静力试验研究[J]. 建筑结构, 2017, 47(7):69-71, 51. Xin Ren, Yao Jitao, Wu Mengxi, et al. Quasi-static experimental study on seismic performance of unreinforced masonry spandrel walls[J]. Building Structure, 2017, 47(7):69-71, 51. (in Chinese)
[10] 范博, 郭师虹, 庄稼铸. 砌体结构窗下墙地震破坏研究[J]. 世界地震工程, 2017, 33(2):186-191. Fan Bo, Guo Shihong, Zhuang Jiazhu. Study on earthquake damage to masonry structure window belly wall[J]. World Earthquake Engineering, 2017, 33(2):186-191. (in Chinese)
[11] Tasnimi A A, Mohebkhah A. Investigation on the behavior of brick-infilled steel frames with openings, experimental and analytical approaches[J]. Engineering Structures, 2011, 33(3):968-980.
[12] JGJ/T 101-2015, 建筑抗震试验规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T 101-2015, Specification for seismic test of buildings[S]. Beijing:Building Industry Press of China, 2015. (in Chinese)
[13] 贾穗子, 曹万林, 任乐乐. 装配式轻钢框架-带暗支撑轻墙体组合结构抗震性能试验研究[J]. 建筑结构学报, 2018, 39(11):48-57. Jia Suizi, Cao Wanlin, Ren Lele. Experimental study on seismic performance of fabricated composite structure of lightweight steel frame-lightweight wall with concealed support[J]. Journal of Building Structures, 2018, 39(11):48-57. (in Chinese)
[14] Quiroz L G, Maruyama Y, Zavala C. Cyclic behavior of Peruvian confined masonry walls and calibration of numerical model using genetic algorithms[J]. Engineering Structures, 2014, 75:561-576.
[15] 黄炜, 陈国新, 姚谦峰, 等. 基于统一强度理论的密肋复合墙体开裂荷载计算[J]. 工程力学, 2008, 25(7):94-99. Huang Wei, Chen Guoxin, Yao Qianfeng, et al. Calculation on cracking load of multi-ribbed composite wall based on twin shear unified strength theory[J]. Engineering Mechanics, 2008, 25(7):94-99. (in Chinese)
[16] Masao T, Norikazu O, Makoto M. Simplified maximum strength formula of framed walls with an opening and its analytical accuracy[J]. Concrete Research and Technology, 2002, 13(1):119-126.
[17] Tomazevic M. Earthquake-resistant design of masonry buildings[M]. London:Imperial College Press, 1999:132-137.
[18] GB 50003-2011, 砌体结构设计规范[S]. 北京:中国建筑工业出版社, 2011. GB 50003-2011, Code for design of masonry structures[S]. Beijing:Building Industry Press of China, 2011. (in Chinese)
[19] 张大长, 陈怀亮, 卢中强. 基于抗剪抵抗机构的RC开洞剪力墙极限承载力分析[J]. 土木工程学报, 2008, 41(11):44-50. Zhang Dachang, Chen Huailiang, Lu Zhongqiang. Shear resistent mechanism analysis of the ultimate bearing capacity of RC shear walls with an opening[J]. China Civil Engineering Journal, 2008, 41(11):44-50. (in Chinese)
[1] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[2] 史凤凯, 刘福胜, 王少杰, 岳艺博, 刘康, 黄兴淮. 自保温暗骨架承重墙抗震性能试验研究与分析[J]. 工程力学, 2019, 36(4): 158-166,187.
[3] 张延年;李 恒;刘 明;张 洵;李立东. 现场发泡夹心墙平面内变形性能研究[J]. 工程力学, 2011, 28(6): 141-148.
[4] 曹万林;张建伟;田宝发. 带暗支撑剪力墙体系抗震研究及应用 第十三届全国结构工程学术会议特邀报告[J]. 工程力学, 2004, 21(S1): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[4] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[5] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[6] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[7] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[8] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[9] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
[10] 李元齐;田村幸雄;沈祖炎. 单层网壳结构等效静风荷载分布估计[J]. 工程力学, 2006, 23(1): 57 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日