工程力学 ›› 2019, Vol. 36 ›› Issue (12): 24-36,78.doi: 10.6052/j.issn.1000-4750.2018.12.0678

• 土木工程学科 • 上一篇    下一篇

钢材高温材性模型对火灾下钢框架结构倒塌模拟的影响研究

冯程远1, 李国强1,2, 蒋彬辉3   

  1. 1. 同济大学土木工程学院, 上海 200092;
    2. 同济大学土木工程防灾国家重点实验室, 上海 200092;
    3. 中南大学土木工程学院, 长沙 410075
  • 收稿日期:2018-12-16 修回日期:2019-04-30 出版日期:2019-12-25 发布日期:2019-05-09
  • 通讯作者: 李国强(1963-),男,湖南人,教授,博士,博导,从事多高层钢结构、钢结构抗火、抗震、抗爆研究(E-mail:gqli@tongji.edu.cn). E-mail:gqli@tongji.edu.cn
  • 作者简介:冯程远(1995-),男,山东人,硕士生,从事钢结构抗火研究(E-mail:chengyuanfeng@tongji.edu.cn);蒋彬辉(1987-),男,湖南人,讲师,博士,硕导,从事钢结构抗火以及抗连续倒塌性能研究(E-mail:binhuijiang@csu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51878506)

THE INFLUENCE OF HIGN-TEMPERATURE MATERIAL MODEL OF STEEL ON THE SIMULATION OF COLLAPSE OF STEEL FRAME STRUCTURE UNDER FIRE

FENG Cheng-yuan1, LI Guo-qiang1,2, JIANG Bin-hui3   

  1. 1. College of Civil Engineering, Tongji University, Shanghai 200092, China;
    2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China;
    3. School of Civil Engineering, Central South University, Changsha 410075, China
  • Received:2018-12-16 Revised:2019-04-30 Online:2019-12-25 Published:2019-05-09

摘要: “9·11”事件发生后,火灾下钢结构倒塌研究得到了世界各国学者的广泛关注。钢材的物理、力学性能在高温下会显著降低,从而钢结构极易发生倒塌。因此,该文基于平面钢框架在单柱受火条件下的倒塌试验,应用大型商业有限元软件ABAQUS的显式动力分析模块,并采用梁单元对试验进行数值模拟,重点研究了钢材高温材性模型对火灾下钢框架结构倒塌模拟的影响,提出了适用于火灾下钢框架结构倒塌模拟的钢材高温应力-应变本构模型和热膨胀系数模型的建议。该文列举了常用的三种高温应力-应变本构模型,同时考虑应变率效应的影响,通过模拟结果与试验结果的差异对比,分析了各个模型应用于火灾下钢框架结构倒塌模拟的有效性。理想高温应力-应变本构模型,会导致临界温度与失效模式模拟不准确,应用存在一定局限性;EC3高温应力-应变本构模型可较为准确地模拟准静态失效模式,但对于动力失效模式的模拟存在一定局限性;因此,对于准静态失效模式倒塌模拟,建议采用EC3或改进的EC3高温应力-应变本构模型;对于动力失效模式的倒塌模拟,建议采用改进的EC3高温应力-应变本构模型,并采用应变率效应增大系数(DIF)的方法以考虑应变率效应的影响。此外,通过四种钢材热膨胀系数模型的对比,进一步研究了钢材“相位变换”现象对火灾下钢框架结构倒塌模拟的影响。结果表明,虽然欧洲规范EC3给出了精细的热膨胀系数模型,但采用GB 51249取值的计算结果与试验符合更好,建议采用中国规范GB 51249的相关规定。

关键词: 结构工程, 钢框架, 倒塌数值模拟, 火灾, 高温应力-应变本构模型, 热膨胀系数模型

Abstract: After the 9·11 incident, the research on fire-induced collapse of steel structures has been receiving a widespread attention from scholars all around the world. The physical and mechanical properties of steel material can be significantly reduced at elevated temperatures, thusly steel structures are prone to collapse under fire. This paper is based on the collapse experiment of planar steel frames with one column heated. The explicit dynamic analysis module of ABAQUS is used for simulation and the experiment is simulated by a beam element. The influence of high-temperature material model of steel on the simulation of collapse of steel frame structures under fire is studied. Some suggestions about how to choose the suitable high-temperature constitutive model and thermal expansion coefficient model for the simulation of collapse of a steel frame structure under fire are proposed. Three kinds of high-temperature constitutive models considering the effect of strain rate are enumerated. By comparing the simulation results with the experimental results, the effectiveness of each model in the simulation of collapse of steel frame structures under fire is analyzed. Ideal high-temperature constitutive model will lead to an inaccurate simulation of a critical temperature and failure mode, and there are some limitations in its application; EC3 high-temperature constitutive model can accurately simulate the quasi-static failure modes, but cannot simulate the dynamic failure mode correctly. Therefore, it is suggested to adopt EC3 or the improved EC3 high-temperature constitutive model for the simulation of a quasi-static failure mode. For the simulation of a dynamic failure mode, the improved EC3 high-temperature constitutive model is recommended and Dynamic Increase Factor (DIF) is adopted to consider the effect of a strain rate. In addition, by comparing four kinds of models of thermal expansion coefficients, the effect of phase transformation of steel material on the simulation of collapse of steel frame structures under fire is further studied. Although EC3 has provided a detailed thermal expansion coefficient model, the model proposed by GB 51249 is recommended as it more closely fits test results.

Key words: structural engineering, steel frame, numerical simulation of collapse, fire, high-temperature constitutive model, thermal expansion coefficient model

中图分类号: 

  • TU352.5
[1] 李国强, 王卫永. 钢结构抗火安全研究现状与发展趋势[J]. 土木工程学报, 2017, 50(12):1-8. Li Guoqiang, Wang Weiyong. State-of-the-art and development trend of fire safety research on steel structures[J]. China Civil Engineering Journal, 2017, 50(12):1-8. (in Chinese)
[2] 陆新征, 江见鲸. 世界贸易中心飞机撞击后倒塌过程的仿真分析[J]. 土木工程学报, 2001, 34(6):8-10. Lu Xinzheng, Jiang Jianjing. Dynamic finite element simulation for the collapse of world trade center[J]. China Civil Engineering Journal, 2001, 34(6):8-10. (in Chinese)
[3] 汤怡蓉, 李炳泉, 李晓霞. 噩梦Windsor:西班牙温莎大厦火灾调查报告辑要[J]. 上海消防, 2006(6):35-43. Tang Yirong, Li Bingquan, Li Xiaoxia. Nightmare (windsor):summary of fire investigation report of windsor building in Spain[J]. Fire Shanghai, 2006(6):35-43. (in Chinese)
[4] 温消宣, 甘凌峰, 叶建良. 钢结构厂房遭遇大火"软趴趴"海绵厂五员工救火遇难[EB/OL]. 浙江:杭州网, http://zjnews.zjol.com.cn/system/2013/09/04/019574904.shtml, 2013. Wen Xiaoxuan, Gan Lingfeng, Ye Jianliang. A fire broke out in the steel structure workshop and five employees of the sponge factory were killed in the fire[EB/OL]. Zhejiang:Hangzhou net, http://zjnews.zjol.com.cn/system/2013/09/04/019574904.shtml, 2013. (in Chinese)
[5] 李卿. 巴西圣保罗一24层废弃公寓楼失火坍塌已致1死3失踪[EB/OL]. 中国新闻网, http://www.chinanews.com/gj/2018/05-02/8503880.shtml, 2018. Li Qing. A 24-storey abandoned apartment building in Sao Paulo, Brazil, collapsed in a fire, killing one and missing three people[EB/OL]. China News Service, http://www.chinanews.com/gj/2018/05-02/8503880.shtml, 2018. (in Chinese)
[6] Lou G B, Wang C H, Jiang J, et al. Fire-induced progressive collapse of 3D steel portal frames[J]. Procedia engineering, 2017, 210:537-543.
[7] Lou G B, Wang C H, Jiang J, et al. Fire tests on full-scale steel portal frames against progressive collapse[J]. Journal of Constructional Steel Research, 2018, 145:137-152.
[8] Lou G B, Wang C H, Jiang J, et al. Experimental and numerical study on thermal-structural behavior of steel portal frames in real fires[J]. Fire Safety Journal, 2018, 98:48-62.
[9] 张超, 薛素铎, 王广勇, 等. 火灾后型钢混凝土框架结构力学性能试验研究及分析[J]. 工程力学, 2018, 35(5):152-161. Zhang Chao, Xue Suduo, Wang Guangyong, et al. Experimental research and ansysis on the post-fire performance of steel reinforced concrete frame structures[J]. Engineering Mechanics, 2018, 35(5):152-161. (in Chinese)
[10] Jiang J, Li G Q. Disproportionate collapse of 3D steel-framed structures exposed to various compartment fires[J]. Journal of Constructional Steel Research, 2017, 138:594-607.
[11] Jiang J, Li G Q. Progressive collapse analysis of 3D steel frames with concrete slabs exposed to localized fire[J]. Engineering Structures, 2017, 149:21-34.
[12] Jiang B H, Li G Q, Usmani A. Progressive collapse mechanisms investigation of planar steel moment frames under localized fire[J]. Journal of Constructional Steel Research, 2015, 115:160-168.
[13] Jiang B H, Li G Q, B.A. Izzuddin. Dynamic performance of axially and rotationally restrained steel columns under fire[J]. Journal of Constructional Steel Research, 2016, 122:308-315.
[14] Jiang B H, Li G Q, Li L L, et al. Simulations on progressive collapse resistance of steel moment frames under localized fire[J]. Journal of Constructional Steel Research, 2017, 138:380-388.
[15] 王培军, 王旭东, 张露露. 常温及火灾下蜂窝梁腹板屈曲承载力计算方法[J]. 工程力学, 2017, 34(2):171-178. Wang Peijun, Wang Xudong, Zhang Lulu. Design method for web-post shear buckling strength of castellated beams at room temperature in fire[J]. Engineering Mechanics, 2017, 34(2):171-178. (in Chinese)
[16] 李国强, 韩林海, 楼国彪, 等. 钢结构及钢-混凝土组合结构抗火设计[M]. 北京:中国建筑工业出版社, 2006:87-148. Li Guoqiang, Han Linhai, Lou Guobiao, et al. Fire resistance design of steel structures and steel-concrete composite structures[M]. Beijing:China Architecture & Building Press, 2006:87-148. (in Chinese)
[17] Jiang B H, Li G Q, Li L L, et al. Experimental studies on progressive collapse resistance of steel moment frames under localized furnace loading[J]. Journal of Structural Engineering, 2017, 144(2):04017190.
[18] Simulia D. ABAQUS 6.11 analysis user's manual[J]. Abaqus, 2011, 6:22.2.
[19] 赵金城. 高温下钢材力学性能的试验研究[J]. 建筑结构, 2000, 30(4):26-28. Zhao Jincheng. Experimental research on machanical behaviours of structural steel at high temperratures[J]. Building Structure, 2000, 30(4):26-28. (in Chinese)
[20] Poh K W. Stress-strain-temperature relationship for structural steel[J]. Journal of materials in civil engineering, 2001, 13(5):371-379.
[21] Lee J, Engelhardt M D, Choi B J. Constitutive model for ASTM A992 steel at elevated temperature[J]. International Journal of Steel Structures, 2015, 15(3):733-741.
[22] Renner A. The effect of strain-rate on the elevatedtemperature behaviour of structural steel[D]. Research Dissertation, University of Sheffield, 2005:16-37.
[23] 周浩, 杜咏, 李国强, 等. 预应力钢绞线温度膨胀及高温蠕变性能试验研究[J]. 工程力学, 2018, 35(6):123-131. Zhou Hao, Du Yong, Li Guoqiang, et al. Mechanical properties of high tensile steel cables at elevated temperature[J]. Engineering Mechanics, 2018, 35(6):123-131. (in Chinese)
[24] 白音. 大空间钢结构火灾下受力性能与抗火计算方法研究[D]. 北京:清华大学, 2008:45-123. Bai Yin. Research on structural performance and fire-resistance of large-space steel structures under fire conditions[D]. Beijing:Tsinghua University, 2008:45-123. (in Chinese)
[25] 杨帆. 大空间及框架钢结构受火全过程数值模拟及损伤评估[D]. 北京:清华大学, 2010:39-147. Yang Fan. Numerical simulation and damage assessment of large-space and steel frame structures on fire[D]. Beijing:Tsinghua University, 2010:39-147. (in Chinese)
[26] GB 51249-2017, 建筑钢结构防火技术规范[S]. 北京:中国计划出版社, 2017. GB 51249-2017, Code for fire safety of steel structures in buildings[S]. Beijign:China Planning Press, 2017. (in Chinese)
[27] European Committee for Standardization (CEN). Eurocode 3:Design of steel structures, Part 1.2, General rules-Structural fire design[S]. British Standards Institution, 2005.
[28] Song Y. Analysis of industrial steel portal frames under fire conditions[D]. Sheffield:University of Sheffield, 2008:96-148.
[29] Li G Q, Wang P, Wang Y. Behaviour and design of restrained steel column in fire, Part 1:Fire test[J]. Journal of Constructional Steel Research, 2010, 66(8/9):1138-1147.
[30] 席丰, 张云. 基于JC模型的受冲击钢梁的位移计算和两个应变率本构模型的比较分析[C]//塑性力学新进展——2011年全国塑性力学会议论文集, 2011:259-264. Xi Feng, Zhang Yun. Displacement calculation of steel beams subjected to impact loading based on JC model and comparison of two kinds of strain rate constitutive models[C]//New Progress in Plastic Mechanics——Proceedings of the 2011 National Conference on Plastic Mechanics. 2011:259-264. (in Chinese)
[31] Cowper G R, Symonds P S. Strain-hardening and strainrate effects in the impact loading of cantilever beams[R]. Brown Univ Providence Ri, 1957:9-15.
[32] Johnson G R. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures[J]. Proc. 7th Inf. Sympo. Ballistics, 1983, 21:541-547.
[33] Chen Hong, Liew J Y. Explosion and fire analysis of steel frames using mixed element approach[J]. Journal of Engineering Mechanics, 2005, 131(6):606-616.
[34] Malvar L J. Review of static and dynamic properties of steel reinforcing bars[J]. Materials Journal, 1998, 95(5):609-616.
[35] Cooke G M E. An introduction to the mechanical properties of structural steel at elevated temperatures[J]. Fire Safety Journal, 1988, 13(1):45-54.
[1] 金路, 马云思, 刘丹. 钢框架-支撑结构二阶侧移的分析方法[J]. 工程力学, 2019, 36(S1): 194-198,216.
[2] 钮鹏, 丁静姝, 金春福, 杨刚, 郭强. 残余应力对碳纤维增强压弯H型钢弹塑性稳定性的影响研究[J]. 工程力学, 2019, 36(S1): 31-36.
[3] 杨浩, 罗帅, 邢国然, 王伟. 杆梁组合结构的有限元分析[J]. 工程力学, 2019, 36(S1): 154-157,169.
[4] 陈适才, 王尚则, 王亚辉, 张洋, 闫维明. 钢结构火灾反应相似模型及试验研究与分析[J]. 工程力学, 2019, 36(8): 79-86,105.
[5] 武海鹏, 曹万林, 董宏英. 基于“统一理论”的异形截面多腔钢管混凝土柱轴压承载力计算[J]. 工程力学, 2019, 36(8): 114-121.
[6] 王萌, 柯小刚. 带LYP160钢连接组件的扩翼型盖板连接节点抗震行为研究[J]. 工程力学, 2019, 36(8): 149-160.
[7] 邹慧辉, 陈万祥, 郭志昆, 周子欣. 火灾后钢管RPC柱近距离爆炸残余承载力研究[J]. 工程力学, 2019, 36(7): 184-196.
[8] 杨俊芬, 程锦鹏, 翟伟, 张文喆. 内填脱硫石膏砌块墙体的新型装配式钢框架抗震性能研究[J]. 工程力学, 2019, 36(6): 147-156.
[9] 陈隽. 试论结构工程中的大数据:范式、技术与实例分析[J]. 工程力学, 2019, 36(6): 175-182.
[10] 张建春, 张大山, 董毓利, 王卫华. 火灾下钢-混凝土组合梁内力变化的试验研究[J]. 工程力学, 2019, 36(6): 183-192,210.
[11] 王伟, 胡书领, 邹超, 陈越时. 节点性能对分层装配支撑钢框架抗震性能的影响研究[J]. 工程力学, 2019, 36(4): 206-213.
[12] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[13] 贾连光, 郎玉霄, 毕然, 宋中琦, 刘勐. 设置横向加劲肋的正六边形孔蜂窝钢梁滞回性能研究[J]. 工程力学, 2019, 36(11): 168-182.
[14] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[15] 姜志琳, 赵均海, 吕美彤, 张磊. 基于线性强化模型的双层厚壁圆筒极限内压统一解[J]. 工程力学, 2018, 35(S1): 6-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[3] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[4] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[5] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[6] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[7] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[8] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[9] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[10] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日