工程力学 ›› 2019, Vol. 36 ›› Issue (11): 183-194.doi: 10.6052/j.issn.1000-4750.2018.12.0664

• 土木工程学科 • 上一篇    下一篇

考虑力学机制和不确定性影响的钢筋混凝土柱概率抗剪承载力模型

刘圣宾1, 凌干展1, 余波1,2,3   

  1. 1. 广西大学土木建筑工程学院, 广西, 南宁 530004;
    2. 工程防灾与结构安全教育部重点实验室, 广西, 南宁 530004;
    3. 广西防灾减灾与工程安全重点实验室, 广西, 南宁 530004
  • 收稿日期:2018-12-10 修回日期:2019-04-09 出版日期:2019-11-13 发布日期:2019-04-29
  • 通讯作者: 余波(1982-),男,四川人,教授,博士,博导,主要从事钢筋混凝土结构全寿命性能研究(E-mail:gxuyubo@gxu.edu.cn). E-mail:gxuyubo@gxu.edu.cn
  • 作者简介:刘圣宾(1993-),男,河南人,硕士生,主要从事钢筋混凝土柱承载力分析与校准研究(E-mail:liushengbin@st.gxu.edu.cn);凌干展(1994-),男,广西人,硕士生,主要从事钢筋混凝土构件概率承载力模型研究(E-mail:lingganzhan@st.gxu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51668008,51738004);广西自然科学基金项目(2018GXNSFAA281344)

PROBABILISTIC SHEAR STRENGTH MODEL OF REINFORCED CONCRETE COLUMNS CONSIDERING MECHANICAL MECHANISM AND UNCERTAINTIES

LIU Sheng-bin1, LING Gan-zhan1, YU Bo1,2,3   

  1. 1. School of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi, 530004, China;
    2. Key Laboratory of Engineering Disaster Prevention and Structural Safety of Ministry of Education, Nanning, Guangxi, 530004, China;
    3. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Nanning, Guangxi, 530004, China
  • Received:2018-12-10 Revised:2019-04-09 Online:2019-11-13 Published:2019-04-29

摘要: 为了克服传统确定性抗剪承载力模型无法合理考虑不确定性因素影响所存在的缺陷,研究建立了一种能够综合考虑力学机制和不确定性影响的钢筋混凝土(RC)柱概率抗剪承载力模型。首先基于桁架-拱模型,综合考虑混凝土、箍筋和拱作用的抗剪承载力贡献以及不确定性的影响,建立了RC柱概率抗剪承载力模型的解析表达式;然后结合贝叶斯理论和马尔科夫链蒙特卡洛(MCMC)法,确定了概率模型参数的后验分布信息,并分析了概率模型参数的先验分布信息以及更新批次对概率模型参数后验分布的稳定性和收敛性的影响;最后利用试验数据验证了该概率模型的有效性。分析表明,随着试验数据的增加,概率模型参数的后验分布可以实现不断更新;概率抗剪承载力模型不仅可以合理描述抗剪承载力的概率分布特性,而且可以校准分析传统确定性抗剪承载力模型的计算精度。

关键词: 钢筋混凝土柱, 抗剪承载力, 力学机制, 马尔科夫链蒙特卡洛法, 概率模型

Abstract: In order to overcome the disadvantage that traditional deterministic shear strength models cannot rationally consider the influence of uncertainties, a probabilistic shear strength model for reinforced concrete (RC) columns was proposed by considering the mechanical mechanism and the influence of uncertainties. The analytical expression of the probabilistic shear strength model for RC columns was established firstly, based on the truss-arch model by taking into account the contributions of concrete, transverse reinforcement and arch action as well as the influence of uncertainties. Then the posterior distribution of probabilistic model parameters was determined by combining the Bayesian theory and the Markov Chain Monte Carlo (MCMC) method. Meanwhile, the influences of the prior distribution and the number of updates on the stability and convergence of the posterior distribution of probabilistic model parameters were investigated. Finally, the applicability of probabilistic shear strength model was verified by comparing with experimental data. The analysis results show that the posterior distribution of probabilistic model parameters will be updated gradually with the increase of experimental data. Moreover, the probabilistic shear strength model is not only able to reasonably describe the probabilistic characteristics of shear strength, but also can calibrate the accuracy of traditional deterministic shear strength models.

Key words: reinforced concrete columns, shear strength, mechanical mechanism, Markov Chain Monte Carlo method, probabilistic model

中图分类号: 

  • TU375.3
[1] 张勤, 王娜, 贡金鑫. 钢筋混凝土柱地震破坏模式及考虑剪切变形的抗震性能研究进展[J]. 建筑结构学报, 2017, 38(8):1-13. Zhang Qin, Wang Na, Gong Jinxing. State of the art of seismic performance including shear effects and failure modes of reinforced concrete columns[J]. Journal of Building Structures, 2017, 38(8):1-13. (in Chinese)
[2] 余波, 陈冰, 吴然立. 剪切型钢筋混凝土柱抗剪承载力计算的概率模型[J]. 工程力学, 2017, 34(7):136-145. Yu Bo, Chen Bing, Wu Ranli. Probabilistic model for shear strength of shear-critical reinforced concrete columns[J]. Engineering Mechanics, 2017, 34(7):136-145. (in Chinese)
[3] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3):159-166. Deng Mingke, Zhang Yangxi, Hu Hongbo. Experimental study and calculation of the shear capacity of RC columns strengthened with high ductile concrete[J]. Engineering Mechanics, 2018, 35(3):159-166. (in Chinese)
[4] Armen D K, Ditlevsen O. Aleatory or epistemic? Does it matter?[J]. Structural Safety, 2009, 31(2):105-112.
[5] Murphy C, Gardoni P, Harris C E. Classification and moral evaluation of uncertainties in engineering modeling[J]. Science and Engineering Ethics, 2011, 17(3):553-570.
[6] 余波, 陈冰. 锈蚀钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(11):115-124. Yu Bo, Chen Bing. Probabilistic model for shear strength of corroded reinforced concrete beams[J]. Engineering Mechanics, 2018, 35(11):115-124. (in Chinese)
[7] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9):135-144. Yu Bo, Tao Boxiong, Liu Shengbin. A probabilistic model for peak stress of concrete confined by ties[J]. Engineering Mechanics, 2018, 35(9):135-144. (in Chinese)
[8] Chen J B, Wan Z Q. A compatible probabilistic framework for quantification of simultaneous aleatory and epistemic uncertainty of basic parameters of structures by synthesizing the change of measure and change of random variables[J]. Structural Safety, 2019, 78:76-87.
[9] Yu B, Tang R K, Li B. Probabilistic calibration for development length models of reinforcing bar[J]. Engineering Structures, 2019, 182:279-289.
[10] Yu B, Liu S B, Li B. Probabilistic calibration for shear strength models of reinforced concrete columns[J]. Journal of Structural Engineering, 2019, 145(5):04019026-1-04019026-14.
[11] Ritter W. Die bauweise hennebique[J]. Chweizerische Bauzeitung, 1899, 33(7):59-61.
[12] Vecchio F J, Collins M P. The modified compressionfield theory for reinforced concrete elements subjected to shear[J]. ACI Structural Journal, 1986, 83(2):219-231.
[13] CSA A23.3-04, Design of concrete structures[S]. Mississauga, Ontario, Canada:Canadian, Canadian Standards Association, 2004.
[14] 魏巍巍, 贡金鑫. 钢筋混凝土构件基于修正压力场理论的受剪承载力计算[J]. 工程力学, 2011, 28(2):111-117. Wei Weiwei, Gong Jinxin. Shear strength of reinforced concrete members based on modified compression field theory[J]. Engineering Mechanics, 2011, 28(2):111-117. (in Chinese)
[15] Biskinis D E, Roupakias G K, Fardis M N. Degradation of shear strength of reinforced concrete members with inelastic cyclic displacements[J]. ACI Structural Journal, 2004, 101(6):773-783.
[16] Pan Z, Li B. Truss-arch model for shear strength of shear-critical reinforced concrete columns[J]. Journal of Structural Engineering, 2013, 139(4):548-560.
[17] FEMA273, NEHRP guidelines for the seismic rehabilitation of buildings[S]. Washington, D C:Federal Emergency Management Agency, 1997.
[18] ACI 318-11, Building code requirements for structural concrete and commentary[S]. Farmington Hills:American Concrete Institute, 2011.
[19] SL 191-2008, 水工混凝土结构设计规范[S]. 北京:中国水利水电出版社, 2008. SL 191-2008, Design code for hydraulic structures[S]. Beijing:China Water & Power Press, 2008. (in Chinese)
[20] EN-1998-3, CEN. Design of structures for earthquake resistance-Part 3:Assessment and retrofitting of buildings[S]. Eurocode 8. Brussell:European Committee for Standardization, 2005.
[21] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2015. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[22] 吴涛, 刘喜, 邢国华. 基于贝叶斯理论的钢筋混凝土柱受剪承载力计算[J]. 工程力学, 2013, 30(5):195-201, 206. Wu Tao, Liu Xi, Xing Guohua. Study on the shear capacity of reinforced concrete column based on Bayesian theory[J]. Engineering Mechanics, 2013, 30(5):195-201, 206. (in Chinese)
[23] 魏巍巍. 基于修正压力场理论的钢筋混凝土结构受剪承载力及变形研究[D]. 大连:大连理工大学, 2011. Wei Weiwei. Study on shear capacity and deformation for reinforced concrete structure based on modified compression field theory[D]. Dalian:Dalian University of Technology, 2011. (in Chinese)
[24] 余波, 吴然立, 陈冰. 剪切型钢筋混凝土柱临界斜裂缝倾角的概率模型[J]. 计算力学学报, 2017, 34(5):547-554. Yu Bo, Wu Ranli, Chen Bing. Probabilistic model for critical diagonal crack angle of shear-critical reinforced concrete columns[J]. Chinese Journal of Computational Mechanics, 2017, 34(5):547-554. (in Chinese)
[25] Umehara H, Jirsa J O. Shear strength and deterioration of short reinforced concrete columns under cyclic deformations[R]. Washington, D C:National Science Foundation, 1982.
[26] Bett B J, Klingner R E, Jirsa J O. Behavior of strengthened and repaired reinforced concrete columns under cyclic deformations[R]. Washington, D C:National Science Foundation, 1985.
[27] Yalçin. Seismic evaluation and retrofit of existing reinforced concrete bridge columns[D]. Canada:University of Ottawa, 1998.
[28] Xiao Y, Martirossyan A. Seismic performance of high-strength concrete columns[J]. Journal of Structural Engineering, 1998, 124(3):241-251.
[29] Lynn A C. Seismic evaluation of existing reinforced concrete building columns[D]. Berkeley:University of California, 2001.
[30] Nakamura T, Yoshimura M. Gravity load collapse of reinforced concrete columns with brittle failure modes[J]. Journal of Asian Architecture and Building Engineering, 2002, 1(1):21-27.
[31] Lam S S E, Wang Z Y, Liu Z Q, et al. Drift capacity of rectangular reinforced concrete columns with low lateral confinement and high-axial load[J]. Journal of Structural Engineering. 2003, 129(6):733-742.
[32] Yoshimura M, Takaine Y, Nakamura T. Axial collapse of reinforced concrete columns[C]//13th World Conference on Earthquake Engineering, Vancouver, B C, Canada, 2004:1-11.
[33] Ousalem H, Kabeyasawa T, Tasai A. Evaluation of ultimate deformation capacity at axial load collapse of reinforced concrete columns[C]//13th World Conference on Earthquake Engineering, Vancouver, B C, Canada, 2004:1-11.
[34] Tran C T N. Experimental and analytical studies on the Seismic behavior of reinforced concrete columns with light transverse reinforcement[D]. Singapore:Nangyang Technological University, 2010.
[35] Wibowo A, Wilson J L, Lam N T K, et al. Drift capacity of lightly reinforced concrete columns[J]. Australian Journal of Structural Engineering, 2011, 15(2):131-150.
[36] Pham T P, Li B. Seismic performance of reinforced concrete columns with plain longitudinal reinforcing bars[J]. ACI Structural Journal, 2014, 111(3):561-572.
[37] Li Y A, Huang Y T, Hwang S J. Seismic response of reinforced concrete short columns failed in shear[J]. ACI Structural Journal, 2014, 111(4):945-954.
[38] Gardoni P, Der Kiureghian A, Mosalam K M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations[J]. Journal of Engineering Mechanics, 2002, 128(10):1024-1038.
[39] Haario H, Laine M, Mira A, et al. DRAM:Efficient adaptive MCMC[J]. Statistics & Computing, 2006, 16(4):339-354.
[40] 刘纲, 罗钧, 秦阳, 等. 基于改进MCMC方法的有限元模型修正研究[J]. 工程力学, 2016, 33(6):138-145. Liu Gang, Luo Jun, Qin Yang, et al. A finite element model updating method based on improved MCMC method[J]. Engineering Mechanics, 2016, 33(6):138-145. (in Chinese)
[41] Melchers R E. Structural reliability analysis and prediction[M]. Chichester:John Wiley and Sons, 2002.
[1] 田稳苓, 温晓东, 彭佳斌, 徐丽丽, 李子祥. 新型泡沫混凝土轻钢龙骨复合墙体抗剪承载力计算方法研究[J]. 工程力学, 2019, 36(9): 143-153.
[2] 邢国华, 杨成雨, 常召群, 秦拥军, 张广泰. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. 工程力学, 2019, 36(8): 87-95.
[3] 侯立群, 闫维明, 陈适才, 陆新征. 内置角钢改进夹心节点抗震性能研究与抗剪承载力计算[J]. 工程力学, 2019, 36(7): 79-88.
[4] 王威, 刘格炜, 苏三庆, 张龙旭, 任英子, 王鑫. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197-206,226.
[5] 马颖, 王东升, 解河海, 白卫峰. 基于Bayesian理论的弯剪破坏钢筋混凝土柱变形能力概率模型[J]. 工程力学, 2019, 36(7): 216-226.
[6] 杨勇, 陈阳, 张锦涛, 林冰, 于云龙. 部分预制装配型钢混凝土构件斜截面抗剪承载能力试验研究[J]. 工程力学, 2019, 36(4): 109-116.
[7] 张艺欣, 郑山锁, 裴培, 李磊, 秦卿, 董立国. 钢筋混凝土柱冻融损伤模型研究[J]. 工程力学, 2019, 36(2): 78-86.
[8] 刘喜, 吴涛, 刘毅斌. 基于Bayesian-MCMC方法的深受弯构件受剪概率模型研究[J]. 工程力学, 2019, 36(11): 130-138.
[9] 曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207-215.
[10] 杨勇, 陈阳. PBL剪力连接件抗剪承载力试验研究[J]. 工程力学, 2018, 35(9): 89-96.
[11] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9): 135-144.
[12] 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138-143,171.
[13] 孟凡净, 刘焜, 吴华伟. 颗粒流润滑剪切膨胀的力学机制研究[J]. 工程力学, 2018, 35(8): 236-244.
[14] 吕伟荣, 朱峰, 卢倍嵘, 石卫华, 张家志, 何潇锟, 卿胜青. 风机基础开孔板连接件剪切受力机理试验研究[J]. 工程力学, 2018, 35(7): 127-138.
[15] 马辉, 李三只, 李哲, 王振山, 梁炯丰. 型钢再生混凝土柱-钢梁组合框架节点抗剪承载力研究[J]. 工程力学, 2018, 35(7): 176-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[4] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[5] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[6] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[7] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[8] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[9] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
[10] 李元齐;田村幸雄;沈祖炎. 单层网壳结构等效静风荷载分布估计[J]. 工程力学, 2006, 23(1): 57 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日