工程力学 ›› 2019, Vol. 36 ›› Issue (11): 168-182.doi: 10.6052/j.issn.1000-4750.2018.12.0655

• 土木工程学科 • 上一篇    下一篇

设置横向加劲肋的正六边形孔蜂窝钢梁滞回性能研究

贾连光, 郎玉霄, 毕然, 宋中琦, 刘勐   

  1. 沈阳建筑大学土木工程学院, 辽宁, 沈阳 110168
  • 收稿日期:2018-12-03 修回日期:2019-07-30 出版日期:2019-11-13 发布日期:2019-06-14
  • 通讯作者: 贾连光(1961-),男,辽宁人,教授,硕士,博导,主要从事钢结构研究(E-mail:syjlg@163.com). E-mail:syjlg@163.com
  • 作者简介:郎玉霄(1995-),女,黑龙江人,硕士生,主要从事钢结构研究(E-mail:1254956227@qq.com);毕然(1988-),女,内蒙古人,博士生,主要从事钢结构研究(E-mail:biran0312@163.com);宋中琦(1990-),男,河南人,硕士生,主要从事钢结构研究(E-mail:1437324854@qq.com);刘勐(1991-),男,河北人,硕士生,主要从事钢结构研究(E-mail:1623124393@qq.com).
  • 基金资助:
    国家自然科学基金项目(51578346)

STUDY ON HYSTERETIC BEHAVIOR OF REGULAR HEXAGONAL HONEYCOMB STEEL BEAMS WITH TRANSVERSE STIFFENERS

JIA Lian-guang, LANG Yu-xiao, BI Ran, SONG Zhong-qi, LIU Meng   

  1. College of Civil Engineering, Shenyangjianzhu University, Liaoning, Shenyang 110168, China
  • Received:2018-12-03 Revised:2019-07-30 Online:2019-11-13 Published:2019-06-14

摘要: 为避免蜂窝构件腹板局部屈曲造成结构失效问题,设置横向加劲肋对正六边形孔蜂窝钢梁滞回性能影响应重点研究。该文采用试验和有限元分析方法,研究在往复荷载作用下蜂窝钢梁的破坏模式、局部稳定和滞回性能。试验试件为2根孔间墩板均设置横向加劲肋且开孔率相同但腹板高厚比不同的蜂窝钢梁,并与参数相同的2根无加劲肋蜂窝钢梁相对比。结果表明,在低周往复荷载作用下,孔间墩板均设置横向加劲肋的试件,墩板受到横向加劲肋平面外约束从而减小腹板局部屈曲的影响,破坏主要发生在孔角位置,与无加劲肋的蜂窝钢梁试件相比,设置横向加劲肋试件的滞回性能明显提高。通过分析可知,横向加劲肋布置位置不同,蜂窝梁的破坏形态发生改变,对其滞回性能有较大影响,合理的加劲肋布置位置可有效提高蜂窝钢梁的滞回性能。

关键词: 结构工程, 蜂窝钢梁, 试验及有限元分析, 腹板局部屈曲, 滞回性能, 横向加劲肋

Abstract: In order to avoid structural failure caused by local buckling of castellated member webs, the influence of transverse stiffening rib on the hysteresis behavior of a regular hexagonal honeycomb steel beam should be studied emphatically. In this paper, the failure mode, local stability and hysteresis performance of castellated steel beams under reciprocating load are studied by means of test and finite element analysis. The test specimen are 2 transverse stiffening rib castellated beams with the same opening rate but different web thickness ratios, and compared with 2 non-stiffened rib castellated steel beams with the same parameters. The results show that:under a low cycle reciprocating load, the specimen of transverse stiffening rib is arranged in the pier plate of the hole, and the pier plate is restrained by transverse stiffening rib to reduce the influence of local buckling of webs. The failure mainly occurs in the hole angle position. Compared with the non-stiffened rib castellated-steel beams, the hysteretic performance of the lateral stiffening-rib specimen is obviously improved. It shows that the layout of transverse stiffened rib is different, the failure mode of the castellated beam is changed, and the hysteretic performance is greatly affected. The reasonable stiffening rib placement can effectively improve the hysteretic performance of castellated steel beams.

Key words: structural engineering, castellated beam, test and the finite element analysis, local buckling of webs, hysteretic behavior, transverse stiffening rib

中图分类号: 

  • TU392
[1] 张益凡. 蜂窝梁的整体和局部稳定分析[D]. 长沙:中南大学, 2008. Zhang Yifan. Overall and local stability analysis of castellated beams[D]. Changsha:ZhongnanUniversity, 2008.
[2] Tsavdaridis K D, D'Mello C. Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes[J]. Journal of Constructional Steel Research, 2011, 67(10):1605-1620.
[3] Sweedan A M I. Elastic lateral stability of I-shaped cellular steel beams[J]. Journal of Constructional Steel Research, 2011, 67(2):151-163.
[4] Showkati H, Ghazijahani T G, Noori A, et al. Experiments on elastically braced castellated beams[J]. Journal of Constructional Steel Research, 2012, 77(10):163-172.
[5] Anupriya B, Jagadeesan K, Saranya B. Effect of stiffeners on castellated beams[J]. 2016, 6(12):30.
[6] Anupriya B, Jagadeesan K. Shear strength of castellated beam with and without stiffeners using FEA (ANSYS 14)[J]. International Journal of Engineering & Technology, 2014, 6(4):55-59.
[7] Chen D Y, Pu W L. The affection of transverse stiffener for elastic buckling of castellated beam web under concentrated Load[J]. International Journal of Science, 2016, Vol. 3 No. 5.
[8] 邓皓. 弯剪共同作用下蜂窝梁腹板弹性屈曲分析[D]. 成都:西南石油大学, 2016. Deng Hao. Elastic buckling analysis of castellated beam webs under the combined action of bending shear[D]. Chengdu:Southwest Petroleum University, 2016. (in Chinese)
[9] 王培军, 王旭东, 马宁. 圆角多边孔蜂窝梁孔间腹板屈曲承载力研究[J]. 工程力学, 2015(4):145-152. Wang Peijun, Wang Xudong, Ma ning. Study on buckling bearing capacity of webs between holes in multi-angle multilateral hole castellated beam[J]. Engineering Mechanics, 2015(4):145-152. (in Chinese)
[10] 王培军, 王旭东, 张露露. 常温及火灾下蜂窝梁腹板屈曲承载力计算方法[J]. 工程力学, 2017(2):171-178. Wang Peijun, Wang Xudong, Zhang Lulu. Calculation method of buckling bearing capacity of castellated beam webs at normal temperature and fire[J]. Engineering Mechanics, 2017(2):171-178. (in Chinese)
[11] Wu Y, Wu D, Lin G D, et al. Simplified calculation method for the bearing capacity of hexagon-hole castellated beam[J]. Journal of Harbin Institute of Technology, 2009, 41(2):5-8.
[12] Anupriya B, Jagadeesa K, Baskar R. Experimental investigation of shear strength of castellated beam with and without stiffeners[J]. Journal of Structural Engineering, 2015, 42(4):358-362.
[13] 贾连光, 李庆文, 刘永方. 蜂窝梁抗剪性能分析与计算[J]. 工程力学, 2012(a02):23-30. JiaLianguang, Li Qingwen, Liu Yongfang. Analysis and calculation of shear resistance of castellated beams[J]. Engineering Mechanics, 2012(A2):23-30. (in Chinese)
[14] 贾连光, 杜明坎, 回锋, 许峰. 六边形孔蜂窝梁和蜂窝组合梁抗剪性能分析[J]. 工程力学, 2016, 33(1):81-87. Jia Lianguang, Du Mingkan, HuiFeng, XuFeng. Shear performance analysis of hexagonal hole castellated beam and castellated composite beam[J]. Engineering Mechanics, 2016, 33(1):81-87. (in Chinese)
[15] 李鹤, 王旭东, 张露露. 圆角多边形孔蜂窝梁孔间腹板屈曲承载力计算方法对比研究[J]. 建筑钢结构进展, 2017, 19(2):38-44. Li He, Wang Xudong, Zhang Lulu. Comparative study on the calculation method of buckling bearing capacity of webs between castellated beam holes in rounded polygon hole[J]. Progress of construction steel structure, 2017, 19(2):38-44. (in Chinese)
[16] 贾连光, 刘勐, 史文学. 考虑蜂窝梁腹板屈曲的框架节点滞回性能分析[J]. 沈阳建筑大学学报(自然科学版), 2016(6):961-969. Jia Lianguang, Liu Meng, Shi Wenxue. Analysis of the hysteresis performance of the frame node considering the buckling of castellated beam webs[J]. Journal of Shenyangjianzhu University (natural Science Edition), 2016(6):961-969. (in Chinese)
[17] 贾连光, 李秋镕, 刘勐, 宋中琦. 蜂窝梁滞回性能研究[J]. 建筑科学与工程学报, 2018, 35(5):179-187. JiaLianguang, Li Qiurong, Liu Meng, SongZhongqi. Study on hysteresis performance of castellated beams[J]. Journal of Architectural Science and Engineering, 2018,35(5):179-187. (in Chinese)
[18] 李波, 杨庆山, 茹继平. 梁腹板开圆孔的钢框架抗震性能研究[J]. 工程力学, 2009, 26(1):64-73. Li Bo, Yang Qingshan, Ru Jiping. Study on seismic performance of steel frame with open round hole of beam webs[J]. Engineering Mechanics, 2009, 26(1):64-73. (in Chinese)
[19] Chen D Y, Pu W L. The affection of transverse stiffener for elastic buckling of casterllated beam web under concentrated load[J]. International Journal of Science, 2016, 3(5):241-247.
[20] 刘勐. 蜂窝梁及其组合梁滞回性能研究[D]. 沈阳:沈阳建筑大学, 2017. Liu Meng. Study on hysteresis performance of castellated beam and composite beam[D]. Shenyang:Shenyang Jianzhu University, 2017. (in Chinese)
[21] GB/T 2975-1998, 钢及钢产品力学性能试验取样位置及试样制备[S]. 北京:中国标准出版社, 1998. GB/T 2975-1998, Test sampling position and sample preparation of mechanical properties of steel and steel products[S]. Beijing:China Standards Press, 1998. (in Chinese)
[22] GB/T 228-2010, 金属材料-室温拉伸试验方法[S]. 北京:中国标准出版社, 2010. GB/T 228-2010, Metal materials-room temperature tensile test method[S]. Beijing:China Standards Press, 2010. (in Chinese)
[23] JGJ/T 101-2015, 建筑抗震试验方法规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T 101-2015, Specification for seismic test methods for buildings[S]. Beijing:China Architecture & amp; Building Press, 2015. (in Chinese)
[24] 石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 北京:机械工业出版社, 2006. Shi Yiping, Zhou Yurong. A detailed example of ABAQUS finite element analysis[M]. Beijing:Machinery Industry Press, 2006. (in Chinese)
[1] 钮鹏, 丁静姝, 金春福, 杨刚, 郭强. 残余应力对碳纤维增强压弯H型钢弹塑性稳定性的影响研究[J]. 工程力学, 2019, 36(S1): 31-36.
[2] 谢启芳, 张利朋, 王龙, 崔雅珍, 杨柳洁. 拔榫状态下直榫节点滞回性能有限元分析[J]. 工程力学, 2019, 36(S1): 138-143.
[3] 杨浩, 罗帅, 邢国然, 王伟. 杆梁组合结构的有限元分析[J]. 工程力学, 2019, 36(S1): 154-157,169.
[4] 武海鹏, 曹万林, 董宏英. 基于“统一理论”的异形截面多腔钢管混凝土柱轴压承载力计算[J]. 工程力学, 2019, 36(8): 114-121.
[5] 刘嘉琳, 徐龙河. 带自复位耗能支撑钢板剪力墙墙板受力性能研究[J]. 工程力学, 2019, 36(7): 156-164.
[6] 王威, 刘格炜, 苏三庆, 张龙旭, 任英子, 王鑫. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197-206,226.
[7] 杨俊芬, 程锦鹏, 翟伟, 张文喆. 内填脱硫石膏砌块墙体的新型装配式钢框架抗震性能研究[J]. 工程力学, 2019, 36(6): 147-156.
[8] 陈隽. 试论结构工程中的大数据:范式、技术与实例分析[J]. 工程力学, 2019, 36(6): 175-182.
[9] 张建春, 张大山, 董毓利, 王卫华. 火灾下钢-混凝土组合梁内力变化的试验研究[J]. 工程力学, 2019, 36(6): 183-192,210.
[10] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[11] 姜志琳, 赵均海, 吕美彤, 张磊. 基于线性强化模型的双层厚壁圆筒极限内压统一解[J]. 工程力学, 2018, 35(S1): 6-12.
[12] 武启剑, 王臣, 支旭东. 玻璃纤维增强短钢管构件轴压试验和破坏模式仿真研究[J]. 工程力学, 2018, 35(8): 184-191.
[13] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
[14] 李灿军, 周臻, 谢钦. 摩擦耗能型SMA杆自复位梁柱节点滞回性能分析[J]. 工程力学, 2018, 35(4): 115-123.
[15] 刘子珅, 杨红, 张吉庆. 基于横向挠度的钢筋屈曲状态判断方法研究[J]. 工程力学, 2018, 35(2): 144-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[2] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[3] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[4] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[8] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[9] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[10] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日