工程力学 ›› 2019, Vol. 36 ›› Issue (11): 158-167.doi: 10.6052/j.issn.1000-4750.2018.12.0652

• 土木工程学科 • 上一篇    下一篇

基于安全性分析的山区公路弯坡组合路段设计指标研究

岳雷1, 王慧2, 杜豫川1, 姚红云3   

  1. 1. 同济大学道路与交通工程教育部重点实验室, 上海 201804;
    2. 重庆大学土木工程学院, 重庆 400045;
    3. 重庆交通大学交通运输学院, 重庆 400074
  • 收稿日期:2018-12-05 修回日期:2019-03-19 出版日期:2019-11-13 发布日期:2019-03-26
  • 通讯作者: 王慧(1987-),女,黑龙江人,讲师,博士,从事道路工程方面的研究(E-mail:mickysophy@163.com). E-mail:mickysophy@163.com
  • 作者简介:岳雷(1985-),男,重庆人,博士生,从事道路工程、交通工程方面的研究(E-mail:yuelei512@hotmail.com);杜豫川(1976-),男,四川人,教授,博士,从事智慧基础设施方面的研究(E-mail:ycdu@tongji.edu.cn);姚红云(1976-),女,湖南人,教授,博士,从事道路工程、交通安全方面的研究(E-mail:68388615@qq.com).
  • 基金资助:
    国家自然科学基金项目(51008321);重庆大学中央高校学院项目(106112017CDJXY200006)

MOUNTAIN HIGHWAY DESIGN INDEXES OF ASSEMBLE SECTION OF FLAT AND VERTICAL CURVE BASED ON SAFETY ANALYSIS

YUE Lei1, WANG Hui2, DU Yu-chuan1, YAO Hong-yun3   

  1. 1. Key Laboratory of Road and Traffic Engineering, the Ministry of Education, Tongji University, Shanghai 201804, China;
    2. College of civil engineering, Chongqing University, Chongqing 400045, China;
    3. College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
  • Received:2018-12-05 Revised:2019-03-19 Online:2019-11-13 Published:2019-03-26

摘要: 我国当前设计方法对于山区公路,尤其是弯坡组合路段安全性考虑不足。基于车辆在弯坡组合路段行驶的安全性分析,以事故临界状态为限制条件建立弯坡组合路段安全模型。基于安全模型计算讨论了大小代表车型下,弯坡组合路段最小半径、最大坡长等关键设计指标受车路参数的影响及变化规律,利用Carsim仿真软件对变化规律进行了一致性验证,验证了该安全模型的有效性。根据安全模型及仿真计算结果,弯坡组合路段最小半径值与设计车速、路段坡度成正比,与路段超高、横向附着系数值成反比;弯坡组合路段最大坡长值与道路滚动阻力系数、滑移率成正比,与设计车速、路段坡度,以及车型大小成反比,但总体受超高值影响较小。进一步计算分析了考虑车辆实际运行车速下的弯坡组合路段设计指标阈值,并指出对于弯坡组合路段应尽可能采取小纵坡并增大最小半径值,以提高山区公路弯坡组合路段安全水平。

关键词: 道路工程, 山区公路, 设计指标, 弯坡组合路段, 安全性分析

Abstract: The safety of mountain highways is not considered enough by current design methods in China, especially for the design of combination of flat and vertical curve. This paper establishes a safety model based on the analysis of vehicle driving safety on the assemble section of flat and vertical curve, taking the critical state of accident as the limit. The influences of various factors on the design indexes are discussed based on the safety model. The Carsim simulation software is used to verify the change trend and the effectiveness of the security model. The safety model calculations and simulations show that the minimum radius is proportional to the driving speed and the highway gradient, and is inversely proportional to the super-elevation and the lateral adhesion coefficient. The maximum slope length is proportional to the pavement rolling resistance coefficient and the slip ratio, inversely proportional to driving speed, highway gradient, and vehicle size, but not affected by the super-elevation. Furthermore, the thresholds of the design indexes of combination of flat and vertical curve considering the operating speed are calculated. Lower highway gradient and larger minimum radius compared to the norm value are recommended.

Key words: road engineering, mountain highway, design index, combination of flat and vertical curve, safety analysis

中图分类号: 

  • U412.3
[1] 郭忠印, 杨漾, 曹继伟, 等. 基于高速公路线形综合指标的安全评价模型[J]. 同济大学学报(自然科学版), 2009, 37(11):1472-1476. Guo Zhongyin, Yang Yang, Cao Jiwei, et al. Safety evaluation model based on alignment synthetical index of expressway[J]. Journal of Tongji University (Natural Science), 2009, 37(11):1472-1476. (in Chinese)
[2] Jung Soyoung, Wang Kai, Oh Cheol, et al. Development of highway safety policies by discriminating freeway curve alignment features[J]. KSCE Journal of Civil Engineering, 2018, 22(4):1418-1426.
[3] Montella Alfonso, Imbriani Lella Liana. Safety performance functions incorporating design consistency variables[J]. Accident Analysis and Prevention, 2015, 74(1):133-144.
[4] 谢威. 基于车路耦合安全度模型的弯坡组合路段设计理论研究[D]. 重庆:重庆交通大学, 2017. Xie Wei. The research of curved slope road design theory based on vehicle-road coupling safety model[D]. Chongqing:Chongqing Jiaotong University, 2017. (in Chinese)
[5] 潘晓东, 方青, 蒋宏. 基于驾驶视觉需求的山区公路平曲线安全评价[J]. 同济大学学报(自然科学版), 2010, 38(12):1763-1766. Pan Xiaodong, Fang Qing, Jiang Hong. Driving visual demand-based safety evaluation of mountainous highway horizontal curve[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 38(12):1763-1766. (in Chinese)
[6] Shin Jaekwan, Lee Ikjin. Reliability analysis and reliability-based design optimization of roadway horizontal curves using a first-order reliability method[J]. Engineering Optimization, 2015, 47(5):622-641.
[7] 陈富坚, 郭忠印, 陈富强, 等. 公路平曲线半径的可靠性设计[J]. 哈尔滨工业大学学报, 2012, 44(4):100-104. Chen Fujian, Guo Zhongyin, Chen Fuqiang, et al. Reliability design method for horizontal curve radius of highway alignment[J]. Journal of Harbin Institute of Technology, 2012, 44(4):100-104. (in Chinese)
[8] Xu Jin, Lin Wei, Shao Yiming. New design method for horizontal alignment of complex mountain highways based on "trajectory-speed" collaborative decision[J]. Advances in Mechanical Engineering 2017, 9(4):1-18.
[9] Camacho-Torregrosa, Francisco J, Pérez-Zuriaga, et al. New geometric design consistency model based on operating speed profiles for road safety evaluation[J]. Accident:Analysis and Prevention, 2013, 61(8):33-42.
[10] 孔令旗, 郭忠印. 基于人工神经网络的运行车速与道路安全性关系[J]. 同济大学学报(自然科学版), 2007, 35(9):1214-1218. Kong Lingqi, Guo Zhongyin. Artificial neural network-based relation of operating speed and road safety[J]. Journal of Tongji University (Natural Science), 2007, 35(9):1214-1218. (in Chinese)
[11] 肖文, 许仁安, 李淑庆, 等. 安全行车保障措施的新理念在山区公路建设中的应用[J]. 公路, 2006, 12(1):117-122. Xiao Wen, Xu Ren'an, Li Shuqing, et al. Applications of new ideas of driving safety measures on construction of highways in mountain areas[J]. Highway, 2006, 12(1):117-122. (in Chinese)
[12] Dugoff Howard J, Segel Leonard, Fancher Paul. An analysis of tire traction properties and their influence on vehicle dynamic performance[C]. 1970 International Automobile Safety Conference Compendium, SAE (Society of Automotive Engineers), 1970:341-366.
[13] 史春娟, 吕彭民. 基于非线性模型的沥青路面动力响应研究[J]. 工程力学, 2013, 30(2):326-331. Shi Chunjuan, Lü Pengmin. Study on the dynamic response of asphalt pavement based on the nonlinear viscoelastic model[J]. Engineering Mechanics, 2013, 30(2):326-331. (in Chinese)
[14] 陈荫三, 余强, 马建, 等. 辅助制动试验研究[J]. 西安公路交通大学学报, 2000, 20(2):69-70. Chen Yinsan, Yu Qiang, Ma Jian, et al. Experiment research on supplementary brake[J]. Journal of Xi'an Highway University, 2000, 20(2):69-70. (in Chinese)
[15] 苏洋, 李永乐, 彭栋, 等. 公路风屏障流场特性及自身风荷载的足尺模型风洞试验研究[J]. 工程力学, 2017, 34(12):87-94. Su Yang, Li Yongle, Peng Dong, et al. A full-scale wind tunnel test on characteristics of flow fields for the highway barrier and its wind loads[J]. Engineering Mechanics, 2017, 34(12):87-94. (in Chinese)
[16] 王晓颖, 范子杰, 王青春, 等. 鼓式制动器动态应变和温度特性试验研究与分析[J]. 工程力学, 2018, 35(10):222-228, 237. Wang Xiaoying, Fan Zijie, Wang Qingchun, et al. Experimental investigation and analysis on dynamic strain and temperature of drum brake[J]. Engineering Mechanics, 2018, 35(10):222-228, 237. (in Chinese)
[17] 陈汉汛, 朱攀. 摩擦材料引起制动器热衰退的机理的研究与探讨[J]. 材料导报, 2006, 20(增刊1):275-278. Chen Hanxun, Zhu Pan. Research and discussion on the mechanism of brake heat fading caused by friction materials[J]. Material Review, 2006, 20(Suppl 1):275-278. (in Chinese)
[18] QC/T239-1997, 货车、客车制动器性能要求[S]. 北京:中华人民共和国交通运输部, 1997. QC/T239-1997, Performance requirements for brakes of freight and passenger cars[S]. Beijing:Ministry of Communications and Transportation of People's Republic of China, 1997. (in Chinese)
[19] 靳恩勇, 杜博英. 长大下坡货车制动器温度模型[J]. 公路交通科技, 2011, 28(2):133-136. Jin Enyong, Du Boying. Prediction model of brake temperature of truck on long and steep downgrade[J]. Journal of Highway and Transportation Research and Development, 2011, 28(2):133-136. (in Chinese)
[20] 马建, 陈荫三, 余强, 等. 缓行器对汽车制动稳定性影响评价[J]. 交通运输工程学报, 2002, 2(1):105-109. Ma Jian, Chen Yinsan, Yu Qiang, et al. Evaluation of retarder to automobile braking stability[J]. Journal of Traffic and Transportation Engineering, 2002, 2(1):105-109. (in Chinese)
[21] 重庆市交委. 重庆山区农村公路交通安全评价与对策研究报告[R]. 重庆:重庆市交委, 2010. Chongqing Transportation Commission. A study on the evaluation of rural highway traffic safety in mountainous areas in chongqing[R]. Chongqing:Chongqing Transportation Commission, 2010. (in Chinese)
[22] 汪双杰, 周荣贵, 孙小端.公路运行速度设计理论与方法[M]. 北京:人民交通出版社, 2010. Wang Shuangjie, Zhou Ronggui, Sun Xiaoduan. Highway design theory and method based on operating speed[M]. Beijing:China Communications Press, 2010. (in Chinese)
[23] JTG D20-2017, 公路路线设计规范[S]. 北京:中华人民共和国交通运输部, 2017. JTG D20-2017, Standard of highway alignment design[S]. Beijing:Ministry of Communications and Transportation of People's Republic of China, 2017. (in Chinese)
[24] JTG B01-2014, 公路工程技术标准[S]. 北京:中华人民共和国交通运输部, 2014. JTG B01-2014, Technical Standard of Highway Engineering[S]. Beijing:Ministry of Communications and Transportation of People's Republic of China, 2014. (in Chinese)
[1] 王丽娟, 胡昌斌. 设沥青夹层水泥混凝土路面早龄期力学行为与作用效应研究[J]. 工程力学, 2018, 35(2): 105-115.
[2] 王丽娟, 胡昌斌, 曾宇鑫. 水泥混凝土路面板早龄期翘曲行为数值分析研究[J]. 工程力学, 2017, 34(7): 146-155.
[3] 王志臣, 郭乃胜, 赵颖华, 陈忠达. 沥青混合料黏弹性主曲线模拟及换算[J]. 工程力学, 2017, 34(2): 242-248.
[4] 郭乃胜, 王聪, 赵颖华, 谭忆秋, 尤占平. 基于沥青混合料各组分密度的内部结构均匀性分析[J]. 工程力学, 2016, 33(7): 249-256.
[5] 董满生, 鹿婧, 凌天清, 孙志彬, 李凌林. 考虑温度效应的沥青混合料参数模型[J]. 工程力学, 2016, 33(6): 180-185,193.
[6] 周建龙, 包联进, 钱鹏. 超高层结构设计的经济性及相关问题的研究[J]. 工程力学, 2015, 32(9): 9-15.
[7] 曹鹏,冯德成,曹一翔,左文锌. 三点弯曲纤维增强混凝土缺口梁的断裂性能试验研究[J]. 工程力学, 2013, 30(增刊): 221-225.
[8] 谭忆秋,李洛克,曹鹏,米丰毅,龚湘兵. 除冰盐环境下水泥混凝土路面传力杆的锈蚀机理与传荷失效过程分析[J]. 工程力学, 2013, 30(12): 199-205.
[9] 李盛,李宇峙,刘朝晖. 刚柔复合式路面沥青层温度疲劳损伤及开裂研究[J]. 工程力学, 2013, 30(10): 122-127.
[10] 陈 骁,宋祖科. 旧水泥混凝土路面缩缝加设传力杆的力学效应分析[J]. 工程力学, 2013, 30(1): 339-344.
[11] 吕松涛. 考虑加载速度影响的沥青混合料疲劳方程[J]. 工程力学, 2012, 29(8): 276-281.
[12] 王鹏. 不同轮胎花纹非均布荷载下沥青路面三维有限元分析[J]. 工程力学, 2012, 29(5): 237-241.
[13] 王 云,郑小平,黄拳章. 飞机越界阻滞过程中乘客安全性分析[J]. 工程力学, 2012, 29(11): 339-343.
[14] 郭乃胜, 赵颖华. 基于细观力学的沥青混合料动态模量预测[J]. 工程力学, 2012, 29(10): 13-19.
[15] 吕松涛. 基于非线性疲劳损伤的沥青路面轴载换算[J]. 工程力学, 2012, 29(10): 268-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 易贤仁;陶高梁;胡在良. 钢筋混凝土烟囱预应力环箍加固效应研究[J]. 工程力学, 2006, 23(4): 109 -113 .
[2] 隋允康;彭细荣;叶红玲. 应力约束全局化处理的连续体结构ICM拓扑优化方法[J]. 工程力学, 2006, 23(7): 1 -7 .
[3] 彭华;游春华;孟勇. 模态曲率差法对梁结构的损伤诊断[J]. 工程力学, 2006, 23(7): 49 -53,7 .
[4] 殷志祥;孙芳锦. 倒伞式可展索膜结构静力特性分析[J]. 工程力学, 2006, 23(7): 160 -164 .
[5] 徐 静;李宏男;李 钢;黄连壮. 考虑桩-土-结构动力相互作用的输电塔地震反应分析[J]. 工程力学, 2009, 26(9): 24 -029 .
[6] 秦 江;黄克智;黄永刚. 采用特征线方法对混合硬化情况下基于变形机制的应变梯度工程塑性理论的研究[J]. 工程力学, 2009, 26(9): 176 -185 .
[7] 张文芳;贾淑贤;李国胜. 一种全密封锁位型摩擦阻尼隔震支座的试验研究[J]. 工程力学, 2009, 26(11): 95 -101 .
[8] 潘 继;蔡国平. 桁架结构作动器优化配置的粒子群算法[J]. 工程力学, 2009, 26(12): 35 -039 .
[9] 白兴兰;黄维平. 钢悬链线立管与Spar整体分析初探[J]. 工程力学, 2009, 26(12): 161 -166 .
[10] 盛金昌;刘继山;许孝臣;;詹美礼. 页岩钻孔过程中的流固热化学耦合模型[J]. 工程力学, 2009, 26(12): 240 -245 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日