工程力学 ›› 2019, Vol. 36 ›› Issue (11): 147-157.doi: 10.6052/j.issn.1000-4750.2018.12.0647

• 土木工程学科 • 上一篇    下一篇

新型海上超大型钢-混凝土组合箱式浮体平台结构设计与分析

王晓强1, 陶慕轩2   

  1. 1. 清华大学土木工程安全与耐久教育部重点实验室, 北京 100084;
    2. 清华大学北京市钢与混凝土组合结构工程技术研究中心, 北京 100084
  • 收稿日期:2018-12-02 修回日期:2019-06-11 出版日期:2019-11-13 发布日期:2019-06-14
  • 通讯作者: 陶慕轩(1985-),男,上海人,副教授,博士,主要从事结构工程研究(E-mail:taomuxuan@tsinghua.edu.cn). E-mail:taomuxuan@tsinghua.edu.cn
  • 作者简介:王晓强(1994-),男,宁夏人,博士生,主要从事结构工程研究(E-mail:xiaoqiang15@mails.tsinghua.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51722808)

SCHEME DESIGN AND ANALYSIS OF NOVEL VERY LARGE STEELCONCRETE COMPOSITE PONTOON-TYPE FLOATING STRUCTURES

WANG Xiao-qiang1, TAO Mu-xuan2   

  1. 1. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Tsinghua University, Beijing 100084, China;
    2. Beijing Engineering Research Center of Steel and Concrete Composite Structures, Tsinghua University, Beijing 100084, China
  • Received:2018-12-02 Revised:2019-06-11 Online:2019-11-13 Published:2019-06-14

摘要: 钢-混凝土组合结构在大型海上人工岛的建设中具有重要的应用价值和发展潜力。该文针对传统钢结构和混凝土结构用于超大型海上浮式平台的不足,提出一种新型超大型钢-混凝土组合浮箱式平台结构,并总结了该类结构整体方案的设计流程。为实现设计流程中的水弹性力学分析,在开源水动力学程序包NEMOH的基础上基于Fortran语言开发了三维水弹性响应计算程序包THhydro,并采用日本学者Yago和Endo的试验结果验证了程序的准确性。通过水弹性响应分析与结构强度分析,对新型超大型钢-混凝土组合浮箱式平台进行了整体结构方案设计,并与传统钢结构方案设计结果进行了对比讨论。结果表明:组合结构应用于海上超大型浮式平台具有可行性;在吃水深度和应力控制水平相当的情况下,组合结构平台相比传统钢结构平台可显著降低结构用钢量;钢与混凝土之间的配比会显著影响结构用钢量和载重量等指标;波浪产生的结构效应占总效应的比例达20%~60%,可见可靠的水弹性力学分析对该类结构设计非常重要。最后,对组合结构应用于超大型海上浮式平台仍需进一步开展的研究工作进行了展望。

关键词: 钢-混凝土组合结构, 水弹性响应, 超大型浮体, 箱式结构, 钢板-混凝土组合, 结构方案设计

Abstract: Steel-concrete composite structures have significant application value and development potential in the construction of very large floating structures. In order to overcome the shortcomings of conventional very large steel or concrete floating structures, a new type of steel-concrete composite pontoon-type floating structure was proposed, and its overall design procedure was presented. To carry out the hydroelastic analysis required in the design procedure, a three-dimensional hydroelastic package THhydro was developed based on the open-source hydrodynamic package NEMOH to analyze the hydroelastic performance of very large floating structures, and the program was verified by the previous experiments conducted by Yago and Endo from Japan. What is more, based on the hydroelastic analysis and structural strength analysis, a case design of a steel-concrete composite pontoon-type floating structure was conducted, and the design result of the composite structural scheme was also compared to that of a conventional steel structural scheme. The calculation results have proved that:the application of composite structures to offshore very large floating structures is feasible. Compared to conventional steel structural scheme, the proposed composite structural scheme can greatly reduce the steel consumption when designed under the same draft and stress level. The ratio of steel to concrete significantly influences the indexes including the structural loading capacity and steel consumption. The contribution of the wave effect accounts for 20%~60% percent of total structural response, which indicates that a reliable hydroelastic analysis is very important for the design of very large floating structures. Finally, some further research prospects of very large steel-concrete composite floating structures were discussed as well.

Key words: steel-concrete composite structure, hydroelastic response, very large floating structure (VLFS), pontoon-type structure, composite of steel plate and concrete, structural scheme design

中图分类号: 

  • P752
[1] Isobe E. Research and development of Mega-Float[C]. Proceedings of the 3rd International Workshop on Very Large Floating Structures. 1999:7-13.
[2] Remmers G, Zueck R, Palo P, et al. Mobile offshore base[C]. The Eighth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, 1998.
[3] Yago K, Endo H. On the hydoroelastic response of box-shaped floating structure with shallow draft[J].Journal of the Society of Naval Architects of Japan, 1996, 1996(180):341-352.
[4] Iijima K. Hydrodynamic and hydroelastic analyses of very large floating structures in waves[C]. Proceedings 16th International Conference on Offshore Mechanics and Arctic Engineering, 1997(4):139-145.
[5] Kim J W. An eigenfunction expansion method for predicting hydroelastic behavior of a shallow-draft VLFS[C]. Proc. 2nd Intl. Conf. on Hydroelasticity in Marine Tech., Fukuoka, 1998:47-59.
[6] Oci H. A computer program for the hydroelastic response analysis of ocean structures[J]. OffCoast. Inc, Kailua, HI, 2005(1):52.
[7] CSSRC Manual. The software of three-dimensional hydroelastic analyses of ships THAFTS and NTHAFTS-theories and user's manual[R]. Wuxi, China:China Ship Scientific Research Center, 2011.
[8] Fujikubo M. Structural analysis for the design of VLFS[J]. Marine Structures, 2005, 18(2):201-226.
[9] Inoue K, Nagata S, Niizato H. Stress analysis for detailed mega-float structures subject to wave loads[C]. The Twelfth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2002.
[10] Oka M, Oka S, Masanobu S, et al. Wave-induced stress analysis for detailed structural members on a very large floating structure (Mega-Float)[J]. Journal of the Society of Naval Architects of Japan, 2002, 2002(192):639-652.
[11] Kim J G, Cho S P, Kim K T, et al. Hydroelastic design contour for the preliminary design of very large floating structures[J]. Ocean Engineering, 2014, 78:112-123.
[12] 聂建国, 李法雄. 钢-混凝土组合板的弹性弯曲及稳定性分析[J]. 工程力学, 2009, 26(10):59-66. Nie Jianguo, Li Faxiong. Elastic bending and stability of steel-concrete composite plate[J]. Engineering Mechanics, 2009, 26(10):59-66. (in Chinese)
[13] 聂建国, 李法雄. 钢-混凝土组合板单向受压稳定性研究[J]. 中国铁道科学, 2009, 30(6):27-32. Nie Jianguo, Li Faxiong. Study on the stability of steel-concrete composite plates under uniaxial compressed load[J]. China Railway Science, 2009, 30(6):27-32. (in Chinese)
[14] 吴丽丽, 聂建国. 四边简支钢-混凝土组合板的弹性局部剪切屈曲分析[J]. 工程力学, 2010, 27(1):52-57. Wu Lili, Nie Jianguo. Elastic local shear buckling analysis on simply supported steel-concrete composite slab[J]. Engineering Mechanics, 2010, 27(1):52-57. (in Chinese)
[15] Uy B. Stability and ductility of high performance steel sections with concrete infill[J]. Journal of Constructional Steel Research, 2008, 64(7/8):748-754.
[16] Liang Q Q, Uy B, Wright H D, et al. Local buckling of steel plates in double skin composite panels under biaxial compression and shear[J]. Journal of Structural Engineering, 2004, 130(3):443-451.
[17] Baskar K, Shanmugam N E. Steel-concrete composite plate girders subject to combined shear and bending[J]. Journal of Constructional Steel Research, 2003, 59(4):531-557.
[18] Uy B, Bradford M A. Elastic local buckling of steel plates in composite steel-concrete members[J]. Engineering Structures, 1996, 18(3):193-200.
[19] 周萌. 钢-混凝土组合抗拉基本理论及方法研究[D]. 北京:清华大学, 2016. Zhou Meng. Study on basic theory and method of steel-concrete composite tension problem[D]. Beijing:Tsinghua University, 2016. (in Chinese)
[20] Wu Y. Hydroelasticity of floating bodies[D]. London:University of Brunel, 1984.
[21] Price W G, Yousheng W. Hydroelasticity of marine structures[C]. The 16th International Congress of Theoretical and Applied Mechanics, 1985:311-337.
[22] Iijima K. Hydroelastic response of very large floating structures[M]//Encyclopedia of Maritime and Offshore Engineering. NJ:John Wiley & Sons Inc, 2017:1-8.
[23] 崔维成. 超大型海洋浮式结构物水弹性响应预报的研究现状和发展方向[J]. 船舶力学, 2002, 6(1):73-90. Cui Weicheng. Current status and future directions in predicting the hydroelastic response of very large floating structures[J]. Journal of Ship Mechanics, 2002, 6(1):73-90. (in Chinese)
[24] 崔维成, 吴有生, 李润培. 超大型海洋浮式结构物动力特性研究综述[J]. 船舶力学, 2001, 5(1):73-81. Cui Weicheng, Wu Yousheng, Li Runpei. Recent researches on dynamic performances of very large floating structures[J]. Journal of Ship Mechanics, 2001, 5(1):73-81. (in Chinese)
[25] 田超, 吴有生. 航行船舶的三维非线性水弹性分析[J]. 船舶力学, 2007, 11(1):68-78. Tian Chao, Wu Yousheng. Three-dimensional non-linear hydroelastic analysis on ships with forward speed[J]. Journal of Ship Mechanics, 2007, 11(1):68-78. (in Chinese)
[26] 田超, 吴有生. 船舶水弹性力学理论的研究进展[J]. 中国造船, 2008, 49(4):1-11. Tian Chao, Wu Yousheng. Review of research on the hydroelasticity of ship[J], Shipbuilding of China, 2008, 49(4):1-11. (in Chinese)
[27] 崔维成, 吴有生. 超大型海洋浮式结构物开发过程需要解决的关键技术问题[J]. 海洋工程, 2000, 18(3):1-8. Cui Weicheng, Wu Yousheng. Technical problems in the development of very large floating structures[J]. The Ocean Engineering, 2000, 18(3):1-8. (in Chinese)
[28] 滕斌, 勾莹. 大型浮体水弹性作用的频域分析[J]. 工程力学, 2006, 23(增刊2):36-48.Teng Bin, Gou Ying. Hydroelastic analysis of very large floating structure in frequency domain[J]. Engineering Mechanics, 2006, 23(Suppl 2):36-48. (in Chinese)
[29] 董艳秋. 船舶波浪外荷和水弹性[M]. 天津:天津大学出版社, 1991. Dong Yanqiu. Wave load and hydroelasticity of ships[M]. Tianjin:Tianjin University Press, 1991. (in Chinese)
[30] Journée J M J, Massie W W. Offshore hydrodynamics[J]. Delft University of Technology, 2001, 4:38.
[31] Huler S. Defining the wind:The Beaufort Scale and how a 19th-century admiral turned science into poetry[M]. Crown, 2007.
[32] 聂建国, 陶慕轩, 樊建生, 等. 双钢板-混凝土组合剪力墙研究新进展[J]. 建筑结构, 2011, 41(12):52-60. Nie Jianguo, Tao Muxuan, Fan Jiansheng, et al. Research advances of composite shear walls with double steel plates and filled concrete[J]. Building Structure, 2011, 41(12):52-60. (in Chinese)
[33] 胡红松, 聂建国. 双钢板-混凝土组合剪力墙变形能力分析[J]. 建筑结构学报, 2013, 34(5):52-62. Hu Hongsun, Nie Jianguo. Deformability analysis of composite shear walls with double steel plates and infill concrete[J]. Journal of Building Structures, 2013, 34(5):52-62. (in Chinese)
[34] 马晓伟, 聂建国, 陶慕轩, 等. 双钢板-混凝土组合剪力墙压弯承载力数值模型及简化计算公式[J]. 建筑结构学报, 2013, 34(4):99-106. Ma Xiaowei, Nie Jianguo, Tao Muxuan, et al. Numerical model and simplified formula of axial force-moment capacity of composite shear wall with double steel plates and infill concrete[J]. Journal of Building Structures, 2013, 34(4):99-106. (in Chinese)
[35] 聂建国, 卜凡民, 樊健生. 高轴压比、低剪跨比双钢板-混凝土组合剪力墙拟静力试验研究[J]. 工程力学, 2013, 30(6):60-66. Nie Jianguo, Bu Fanming, Fan Jiansheng. Quasi-static test on low shear-span ratio composite shear wall with double steel plates and infill concrete under high axial compression ratio[J]. Engineering Mechanics, 2013, 30(6):60-66. (in Chinese)
[36] 聂建国, 卜凡民, 樊健生. 低剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2011, 32(11):74-81. Nie Jianguo, Bu Fanming, Fan Jiansheng. Experimental research on seismic behavior of low shear-span ratio composite shear wall with double steel plates and infill concrete[J]. Journal of Building Structures, 2011, 32(11):74-81. (in Chinese)
[37] 卜凡民, 聂建国, 樊健生. 高轴压比下中高剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(4):91-98. Bu Fanming, Nie Jianguo, Fan Jiansheng. Experimental study on seismic behavior of medium and high shear-span ratio composite shear wall with double steel plates and infill concrete under high axial compression ratio[J]. Journal of Building Structures, 2013, 34(4):91-98. (in Chinese)
[38] 马晓伟, 聂建国, 陶慕轩. 钢板-混凝土组合剪力墙正常使用阶段有效刚度[J]. 土木工程学报, 2014(7):18-26. Ma Xiaowei, Nie Jianguo, Tao Muxuan. Effective stiffness of steel plate-concrete composite shear wall structures in serviceability state[J]. China Civil Engineering Journal, 2014(7):18-26. (in Chinese)
[39] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3):192-202. Deng Mingke, Lu Hao, Song Hengzhao. Experimental research on aseismic behavior of high ductile concrete filled steel plate composite coupling beams[J]. Engineering Mechanics, 2019, 36(3):192-202. (in Chinese)
[40] 李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究[J]. 工程力学, 2017(9):52-62. Li Xiaojun, Li Xiaohu. Study on in-plane flexural behavior of double steel plates and concrete infill composite shear walls for nuclear engineering[J]. Engineering Mechanics, 2017(9):52-62. (in Chinese)
[41] Lu D, Fu S, Zhang X, et al. A method to estimate the hydroelastic behaviour of VLFS based on multi-rigid-body dynamics and beam bending[J]. Ships and Offshore Structures, 2019, 14(4):354-362.
[42] Yan J B, Liu X M, Liew J Y R, et al. Steel-concrete-steel sandwich system in Arctic offshore structure:Materials, experiments, and design[J]. Materials & Design, 2016, 91:111-121.
[1] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[2] 韦芳芳, 郑泽军, 喻君, 王永泉. 基于钢板屈曲分析的双钢板-混凝土组合剪力墙轴压承载力计算方法[J]. 工程力学, 2019, 36(2): 154-164.
[3] 田建勃, 史庆轩, 刘云贺, 李慎, 马辉. PRC连梁-混合联肢剪力墙抗震性能分析[J]. 工程力学, 2018, 35(11): 53-67.
[4] 张文元, 王柯, 王强, 陈勇, 周宇, 丁玉坤. 多腔钢板-混凝土组合剪力墙抗震性能研究[J]. 工程力学, 2018, 35(11): 125-133.
[5] 汤序霖, 丁昌银, 陈庆军, 蔡健, 邓恺坚, 郑旭东. 带加劲肋多腔双层钢板-混凝土组合剪力墙的抗震性能试验[J]. 工程力学, 2017, 34(12): 150-161.
[6] 田建勃, 史庆轩, 王南, 王朋, 潘秀珍. 基于软化拉-压杆模型的小跨高比钢板-混凝土组合连梁受剪承载力分析[J]. 工程力学, 2016, 33(5): 142-149.
[7] 吴丽丽, 李佳蔚, 邢瑞娇, 安丽佩. 钢板-混凝土组合板抗剪承载性能的试验研究与数值分析[J]. 工程力学, 2016, 33(10): 173-182.
[8] 王宇航,聂建国,樊健生,杨小刚. 罕遇地震下曲线钢-混凝土组合梁桥的墩柱扭转效应[J]. 工程力学, 2014, 31(9): 42-50,56.
[9] 王宇航,聂建国,樊健生. 考虑扭转效应的钢管混凝土纤维梁模型应用研究[J]. 工程力学, 2014, 31(7): 45-53.
[10] 吴丽丽, 邢瑞蛟, 马永君, 江斌, 李杨, 李彦颖. 小剪跨比钢板-混凝土组合板抗剪性能的试验研究[J]. 工程力学, 2014, 31(12): 112-118.
[11] 聂建国,卜凡民,樊健生. 高轴压比、低剪跨比双钢板-混凝土组合剪力墙拟静力试验研究[J]. 工程力学, 2013, 30(6): 60-66.
[12] 卫 星,强士中. 斜拉桥桥塔钢-混凝土结合段传力机理试验研究[J]. 工程力学, 2013, 30(1): 255-260,313.
[13] 肖林, 强士中, 李小珍, 卫星. 考虑开孔钢板厚度的PBL剪力键力学性能研究[J]. 工程力学, 2012, 29(8): 282-288, 296.
[14] 杨 勇;霍旭东;薛建阳;周丕健;聂建国. 钢板-混凝土组合桥面板疲劳性能试验研究[J]. 工程力学, 2011, 28(8): 37-044.
[15] 赵 洁;聂建国. 钢板-混凝土组合梁的非线性有限元分析[J]. 工程力学, 2009, 26(4): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[3] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[4] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[5] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[6] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[7] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[8] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[9] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[10] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日