工程力学 ›› 2019, Vol. 36 ›› Issue (11): 139-146.doi: 10.6052/j.issn.1000-4750.2018.12.0646

• 土木工程学科 • 上一篇    下一篇

强台风作用下近岸海域波浪-风暴潮耦合数值模拟

魏凯1, 沈忠辉1, 吴联活1, 秦顺全1,2   

  1. 1. 西南交通大学土木工程学院桥梁工程系, 成都 610031;
    2. 中铁大桥勘测设计院有限公司, 武汉 430034
  • 收稿日期:2018-12-02 修回日期:2019-05-29 出版日期:2019-11-13 发布日期:2019-06-05
  • 通讯作者: 魏凯(1984-),男,山东人,副教授,博士,主要从事跨海桥梁防灾减灾研究(E-mail:kaiwei@home.swjtu.edu.cn). E-mail:kaiwei@home.swjtu.edu.cn
  • 作者简介:沈忠辉(1984-),男,云南人,硕士,主要从事跨海桥梁防灾减灾研究(E-mail:zh-shen@my.swjtu.edu.cn);吴联活(1993-),男,福建人,博士,主要从事跨海桥梁防灾减灾研究(E-mail:wlh@my.swjtu.edu.cn);秦顺全(1963-),男,四川人,教授,硕士,院士,主要从事桥梁工程设计与施工研究(E-mail:qinsq@brdi.com.cn)
  • 基金资助:
    国家自然科学基金项目(51708455)

COUPLED NUMERICAL SIMULATION ON WAVE AND STORM SURGE IN COASTAL AREAS UNDER STRONG TYPHOONS

WEI Kai1, SHEN Zhong-hui1, WU Lian-huo1, QIN Shun-quan1,2   

  1. 1. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu 610031, China;
    2. China Railway Major Bridge Reconnaissance & Design Institute Co., Ltd., Wuhan 430034, China
  • Received:2018-12-02 Revised:2019-05-29 Online:2019-11-13 Published:2019-06-05

摘要: 强台风作用会在近岸海域形成狂风、巨浪、风暴潮等极端环境,严重威胁跨海桥梁等近海工程结构安全。该研究采用Holland模型风场叠加宫崎正卫移行风场和ERA-Interim风场模拟台风风场,探讨了不同的最大风速半径经验公式对风场的适用性,同时驱动SWAN+ADCIRC波流耦合模式,模拟了强台风"玛莉亚"下台湾海峡及近岸海域波浪-风暴潮的发展过程,并分析了近岸海域波浪、风暴潮的分布特点。为证明方法的可行性和准确性,采用风、浪实测资料对数值模拟结果进行了验证。研究结果表明,叠加风场和TPXO潮汐模式共同驱动的SWAN+ADCIRC波流耦合模式,可以较好地模拟台风期间近岸海域波浪-风暴潮的生成与发展过程。

关键词: 强台风, 波浪-风暴潮, 近岸海域, SWAN+ADCIRC模式, 驱动风场

Abstract: Extreme met-ocean conditions, such as strong wind, huge wave and storm surge in the near-shore areas, generated by strong typhoons pose a great threat to the safety of coastal engineering structures such as sea-crossing bridges. Superimposing the Holland model wind field with Miyazaki model wind field and ERA-Interim wind field, a typhoon wind field is firstly simulated. Then the applicability of different empirical formulas of maximum wind speed radius of the wind field is discussed. Finally, a SWAN+ADCIRC wave-current coupling model is driven to simulate the wave-storm surge evolution process in Taiwan Strait and the coastal areas under strong typhoon Maria (1808), and the characteristics of distribution of wave and storm surge in the coastal area are also discussed. In order to validate the feasibility and accuracy of the presented method, the numerical simulation of wind and wave is verified with measured data. Results show that the SWAN+ADCIRC model driven by superimposed a wind field and a TPXO tidal model can effectively simulate the generation and development process of wave and storm surge in coastal areas.

Key words: strong typhoon, wave-storm surge, coastal areas, SWAN+ADCIRC model, driven wind field

中图分类号: 

  • TU318
[1] Ti Z L, Wei K, Qin S Q, et al. Assessment of random wave pressure on the construction cofferdam for sea-crossing bridges under tropical cyclone[J]. Ocean Engineering, 2018, 160:335-345.
[2] 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8):138-171. Zhang Jiarui, Wei Kai, Qin Shunquan. An Bayesian updating based probabilistic model for the dynamic response of deep-water bridge piers under wave loading[J]. Engineering Mechanics, 2018, 35(8):138-171. (in Chinese)
[3] Xu G J, Chen Q, Chen J H. Prediction of solitary wave forces on coastal bridge decks using artificial neural networks[J]. Journal of Bridge Engineering, 2018, 23(5):04018023-1-04018023-13
[4] Qeshta I M I, Hashemi M J, Gravina R, et al. Review of resilience assessment of coastal bridges to extreme wave-induced loads[J]. Engineering Structures, 2019, 185:332-352.
[5] 姚博, 全涌, 顾明, 等. 混合气候地区极值风速分析方法研究[J]. 工程力学, 2018, 35(5):86-92. Yao Bo, Quan Yong, Gu Ming, et al. Study on the analysis method of extreme wind speed in mixed climate areas[J]. Engineering Mechanics, 2018, 35(5):86-92. (in Chinese)
[6] 孙富学, 许向楠, 史文海, 等. 温州滨海平坦地貌近地台风特性实测研究[J]. 工程力学, 2018, 35(9):73-80. Shu Fuxue, Xu Xiangnan, Shi Wenhai, et al. Field measurements of typhoon characteristics near ground in Wenzhou coastal flat terrian[J]. Engineering Mechanics, 2018, 35(9):73-80. (in Chinese)
[7] Ti Z L, Wei K, Qin S Q, et al. Numerical simulation of wave conditions in nearshore island area for sea-crossing bridge using spectral wave model[J]. Advances in Structural Engineering, 2018, 21(5):756-768.
[8] Chen T, Zhang Q, Wu Y, et al. Development of a wave-current model through coupling of FVCOM and SWAN[J]. Ocean Engineering, 2018, 164:443-454.
[9] Dietrich J C, Tanaka S, Westerink J J, et al. Performance of the unstructured-mesh, SWAN+ADCIRC model in computing hurricane waves and surge[J]. Journal of Scientific Computing, 2012, 52(2):468-497.
[10] Wang Y, Mao X, Jiang W. Long-term hazard analysis of destructive storm surges using the ADCIRC-SWAN model:A case study of Bohai Sea, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73:52-62.
[11] Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions:1. Model description and vaildation[J]. Journal of Geophysical Research:Oceans, 1999, 104(C4):7649-7666.
[12] Pan Y, Chen Y P, Li J X, et al. Improvement of wind field hindcasts for tropical cyclones[J]. Water Science and Engineering, 2016, 9(1):58-66.
[13] Miyazaki M, Ueno T, Unoki S. Theoretical investigations of typhoon surges along the Japanese coast[J]. Oceanographic Magazine, 1962, 13(2):103-117.
[14] Holland G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8):1212-1218.
[15] 方根深, 赵林, 梁旭东, 等. 基于强台风"黑格比"的台风工程模型场参数在中国南部沿海适用性研究[J]. 建筑结构学报, 2018, 39(2):106-113. Fang Genshen, Zhao Lin, Liang Xudong, et al. Applicability analysis of typhoon field parameters in engineering model for south coastal region of China based on strong typhoon Hagupit 0814[J]. Journal of Building Structures, 2018, 39(2):106-113. (in Chinese)
[16] 李瑞龙. 基于改进的台风关键参数的台风极值风速预测[D]. 哈尔滨:哈尔滨工业大学, 2007. Li Ruilong. Prediction of typhoon extreme wind speeds based on improved typhoon key parameters[D]. Harbin:Harbin Institute of Technology, 2007. (in Chinese)
[17] 卢安平. 登陆台风近地风压场实测重构及其对工程场地极值风速影响分析[D]. 上海:同济大学, 2012. Lu Anping. Near ground air pressure of landing typhoon measured reconstruction and its impact on the extreme value wind velocity evaluations of engineering fields[D]. Shanghai:Tongji University, 2012. (in Chinese)
[18] Zhou T Y, Tan Y, Chu A, et al. Integrated model for astronomic tide and storm surge induced by typhoon for Ningbo coast[C]. Sapporo Japan:International Society of Offshore and Polar Engineers, 2018:1124-1129.
[19] Wei K, Arwade S R, Myers A T, et al. Effect of wind and wave directionality on the structural performance of non-operational offshore wind turbines supported by jackets during hurricanes[J]. Wind Energy, 2017, 20:289-303.
[20] 李健, 侯一筠, 孙瑞. 台风模型风场建立及其模式验证[J]. 海洋科学, 2013, 37(11):95-102. Li Jian, Hou Yijun, Sun Rui. Surge model caused by 0814 typhoon and mold wind field established[J]. Marine Sciences, 2013, 37(11):95-102. (in Chinese)
[21] Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric & Oceanic Technology, 2002, 19(2):183-204.
[1] 赵子翔, 苏小卒. 摇摆结构刚体模型研究综述[J]. 工程力学, 2019, 36(9): 12-24.
[2] 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141-148.
[3] 张锋, 史庆轩, 贺志坚. 高层斜交网格筒结构最小势能法简化计算研究[J]. 工程力学, 2019, 36(S1): 25-30,36.
[4] 尚庆学, 李吉超, 王涛. 医疗系统抗震韧性评估指标体系[J]. 工程力学, 2019, 36(S1): 106-110.
[5] 刘晶波, 王东洋, 谭辉, 宝鑫. 隧道纵向地震反应最不利时刻的确定及其应用[J]. 工程力学, 2019, 36(S1): 240-247.
[6] 王俊杰, 王伟. 考虑罗德角参数的钢材薄板延性断裂标定方法[J]. 工程力学, 2019, 36(5): 37-43.
[7] 吕海双, 周蓓蕾, 曹倩, 汪洋. 大型项目中间的工程力学解决方案[J]. 工程力学, 2019, 36(3): 40-52.
[8] 向新岸, 冯远, 董石麟. 一种索穹顶结构初始预应力分布确定的新方法—预载回弹法[J]. 工程力学, 2019, 36(2): 45-52.
[9] 潘超, 张瑞甫, 王超, 逯静洲. 单自由度混联II型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36(1): 129-137,145.
[10] 吴迪, 熊焱. 基于试验的斜交网格-核心筒结构概率地震易损性分析[J]. 工程力学, 2018, 35(11): 155-161,171.
[11] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(S1): 80-87.
[12] 穆富江, 王激扬, 李伟平, 徐世烺. 钢丝网-喷射UHTCC薄板抗弯性能试验研究[J]. 工程力学, 2018, 35(S1): 338-343.
[13] 袁修开, 朱海燕, 张保强. 结构可靠性优化求解的解耦融合策略[J]. 工程力学, 2018, 35(5): 102-108,117.
[14] 杨博雅, 吕西林. 预应力预制混凝土剪力墙结构直接基于位移的抗震设计方法及应用[J]. 工程力学, 2018, 35(2): 59-66,75.
[15] 薛滨, 陈勇, 陈聪, 张文杰, 郭勇, 王激扬, 孙炳楠. 拉弯荷载下钢管杆塔内外法兰设计计算方法[J]. 工程力学, 2017, 34(10): 76-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[2] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[3] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[4] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[8] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[9] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[10] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日