工程力学 ›› 2019, Vol. 36 ›› Issue (10): 40-49.doi: 10.6052/j.issn.1000-4750.2018.11.0635

• 土木工程学科 • 上一篇    下一篇

典型框架-核心筒单重与双重抗侧力体系的抗震性能与剪力分担研究

谢昭波1, 解琳琳2, 林元庆3, 陆新征4   

  1. 1. 清华大学北京市钢与混凝土组合结构工程技术研究中心, 北京 100084;
    2. 北京建筑大学土木与交通工程学院, 北京 100044;
    3. 中国核电工程有限公司郑州分公司, 河南, 郑州 450052;
    4. 土木工程安全与耐久教育部重点试验室, 清华大学土木工程系, 北京 100084
  • 收稿日期:2018-11-26 修回日期:2019-03-13 出版日期:2019-10-25 发布日期:2019-03-25
  • 通讯作者: 陆新征(1978-),男,安徽人,教授,博士,主要从事结构非线性仿真和防灾减灾研究(E-mail:luxz@tsinghua.edu.cn). E-mail:luxz@tsinghua.edu.cn
  • 作者简介:谢昭波(1991-),男,柬埔寨人,硕士生,主要从事结构抗震和防灾减灾研究(E-mail:cheacheavpor@gmail.com);解琳琳(1986-),男,江苏人,讲师,博士,主要从事高层和超高层抗震设计研究(E-mail:xielinlin@bucea.edu.cn);林元庆(1974-),男,福建人,教授级高工,学士,主要从事结构分析、设计及施工一体化技术研究及应用(E-mail:13526593105@126.com).
  • 基金资助:
    国家自然科学基金项目(51778341)

STUDY ON SEISMIC PERFORMANCE AND COLLAPSE-RESISTANT CAPACITY OF TYPICAL FRAME-CORE TUBE STRUCTURES WITH SINGLE AND DUAL LATERAL-FORCE RESISTING SYSTEM

CHEA Cheav Por1, XIE Lin-lin2, LIN Yuan-qing3, LU Xin-zheng4   

  1. 1. Beijing Engineering Research Center of Steel and Concrete Composite Structures, Tsinghua University, Beijing 100084, China;
    2. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    3. China Nuclear Power Engineering Co., Ltd., Zhengzhou Branch, Zhengzhou, Henan 450052, China;
    4. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-11-26 Revised:2019-03-13 Online:2019-10-25 Published:2019-03-25

摘要: 在中国规范体系下,框架-核心筒结构应设计为双重抗侧力体系,其对二道防线的设计有明确的规定,即框架-核心筒体系的框架部分必须具有足够的抗侧刚度和承载力。国外的一些规范(如美国规范ASCE7等)则允许单重抗侧力体系,即水平荷载由剪力墙承担,框架部分只承担竖向荷载。因此,为了比较单重与双重抗侧力体系的抗震性能,该文首先根据中国规范设计一典型框架-核心筒双重抗侧力体系模型,然后在保持结构重力荷载代表值相等(混凝土用量基本不变)的前提下,基于以下调整原则设计了框架-核心筒单重抗侧力体系模型:1)在双重结构体系的基础上取消结构二道防线,即取消结构框架部分的楼层剪力调整;2)为了减小框架构件截面尺寸,该研究取消了框架构件抗震等级的要求,使筒体承受大部分的水平地震作用,而框架只承担结构的竖向荷载。该文对比分析了两种结构体系在多遇和罕遇地震作用下的响应特征和构件损伤情况,进而讨论两种体系的倒塌机理以及抗倒塌性能。最后讨论单重与双重体系在不同地震水准下,框架所承担剪力和剪力分担比的变化情况以及对应关键构件的破坏情况。研究表明:在地震作用下,双重抗侧力体系结构的响应略大于单重抗侧力体系,两者的抗倒塌能力相当。然而,单重体系的用钢量比双重体系少。

关键词: 框架-核心筒结构, 高层结构, 抗侧力体系, 抗震性能, 剪力分担比

Abstract: In the design code system of China, frame-core tube structure should be designed as a dual lateral-force resisting system, and there are strict requirements for the secondary lateral-force resisting system of such structure. In other words, the outer frame of the frame-core tube structure should have sufficient lateral stiffness and strength. However, in the design codes of other countries (e.g., ASCE-7 of the United States), the outer frame of the frame-core tube structure is permitted to only carry the vertical load. Therefore, to compare the seismic performances of the single and dual lateral-force resisting systems of the frame-core tube structure, a dual lateral-force resisting system model was firstly designed following the design codes of China. Subsequently, under the same gravity load (and the same concrete consumption), the single lateral-force resisting system model of the frame-core tube structure was design according to the following procedures:1) the secondary lateral-force resisting system was removed from the dual system, and the shear force adjustment of the frame was ignored; 2) the seismic detailing requirement of the frame was lowered to reduce the sectional size. As a result, the tube beared most of the seismic load, and the frame only resisted the vertical load. The structural responses and component damage of these two systems under SLE (Service Level Earthquake) and MCE (Maximal considered earthquake) were analyzed. Furthermore, the collapse mechanisms of two structures and their collapse-resistances were investigated. Finally, the variation of the shear force and shear distribution of the frame under different levels of earthquake and the corresponding damage of key components were discussed. The research shows that the response of the dual system structure was slightly greater than that of the single system, and their collapse resistant capacities were similar. However, the steel consumption of the single system was less than that of the dual system.

Key words: frame-core tube structure, tall building, lateral-force resisting system, seismic performance, shear distribution

中图分类号: 

  • TU973.17
[1] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. China Architecture & Building Press:Beijing, 2010. (in Chinese)
[2] JGJ 3-2010, 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2010. JGJ 3-2010, Technical specification for concrete structures of tall building[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[3] 钱稼茹, 魏勇, 蔡益燕, 等. 钢框架-混凝土核心筒结构框架地震设计剪力标准值研究[J]. 建筑结构, 2008, 38(3):1-5. Qian Jiaru, Wei Yong, Cai Yiyan, et al. Study on seismic design shear force for frame of steel frame-concrete core wall structures[J]. Building Structure, 2008, 38(3):1-5. (in Chinese)
[4] 扶长生, 张小勇, 周立浪. 框架-核心筒结构体系及其地震剪力分担比[J]. 建筑结构, 2015, 45(4):1-8. Fu Changsheng, Zhang Xiaoyong, Zhou Lilang. Frame-core wall structural system and seismic shear distribution ratio[J]. Building Structure, 2015, 45(4):1-8. (in Chinese)
[5] 安东亚, 周德源, 李亚明. 框架-核心筒结构双重抗震防线研究综述[J]. 结构工程师, 2015, 31(1):191-199. An Dongya, Zhou Deyuan, Li Yaming. Double earthquake fortification lines of frame-core tube structure:state-of-the-art[J]. Structural Engineers, 2015, 31(1):191-199. (in Chinese)
[6] 曹倩, 汪洋, 赵宏. 复杂高层结构体系二道防线的探讨[J]. 建筑结构, 2011, 41(增刊1):331-335. Cao Qian, Wang Yang, Zhao Hong. Discussion on the dual defense system applied in structurally complicated high-rise building[J]. Building Structure, 2011, 41(Suppl 1):331-335. (in Chinese)
[7] ASCE 7-05, Minimum design loads for buildings and other structures[S]. Reston, Virginia:American Society of Civil Engineers, 2005.
[8] ASCE 7-10, Minimum design loads for buildings and other structures[S]. Reston, Virginia:American Society of Civil Engineers, 2010.
[9] ASCE/SEI 41-13, Seismic rehabilitation of existing buildings[S]. Reston, Virginia:American Society of Civil Engineers, 2013.
[10] IBC 2006, International Building Code[S]. Falls Church VA:International Code Council, Inc, 2006.
[11] IBC 2009, International Building Code[S]. Falls Church VA:International Code Council, Inc, 2009.
[12] IBC 2012, International building code[S]. Falls Church VA:International Code Council, Inc, 2012.
[13] PEER/ATC 72-1:Modeling and acceptance criteria for seismic design and analysis of tall buildings[R]. Richmond California:Pacific Earthquake Engineering Research Center, 2010.
[14] 林斯嘉. 框架-剪力墙结构的框架地震层剪力分配[J]. 建筑结构, 2012, 42(增刊2):294-299. Lin Sijia. Distribution of seismic shearing force in frame-shear wall structure[J]. Building Structure, 2012, 42(Suppl 2):294-299. (in Chinese)
[15] 周颖, 于健, 吕西林, 等. 高层钢框架-混凝土核心筒混合结构振动台试验研究[J]. 地震工程与工程振动, 2012, 32(2):98-105. Zhou Ying, Yu Jian, Lu Xilin, et al. Shaking table model test of a high-rise hybrid structure building with steel frame-concrete core wall[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(2):98-105. (in Chinese)
[16] 李国强, 周向明, 丁翔. 高层建筑钢-混凝土混合结构模型模拟地震振动台试验研究[J]. 建筑结构学报, 2001, 22(2):2-7. Li Guoqiang, Zhou Xiangming, Ding Xiang. Shaking table study on a model of steel-concrete hybrid structure tall buildings[J]. Journal of Building Structure, 2001, 22(2):2-7. (in Chinese)
[17] 徐培福, 薛彦涛, 肖从真, 等. 高层型钢混凝土框筒混合结构抗震性能试验研究[J]. 建筑结构, 2005, 35(5):3-8. Xu Peifu, Xue Yantao, Xiao Congzhen, et al. Experimental study on seismic performance of high-rise SRC hybrid structures[J]. Building Structure, 2005, 35(5):3-8. (in Chinese)
[18] 田淑明. 框架-核心筒结构的框架内力调整方法对比研究[J]. 建筑结构学报, 2017, 38(5):100-108. Tian Shuming. Contrastive study on adjustment method of internal force of frame in frame-core wall structure[J]. Journal of Building Structures, 2017, 38(5):100-108. (in Chinese)
[19] 刘阳冰, 刘晶波, 韩强. 组合框架-核心筒结构地震反应初步规律研究[J]. 河海大学学报(自然科学版), 2011, 39(2):148-153. Liu Yangbing, Liu Jingbo, Han Qiang. Preliminary study on seismic response of composite frame-core wall structures[J]. Journal of Hohai University (Natural Sciences), 2011, 39(2):148-153. (in Chinese)
[20] Flores Francisco X, Charney Finley A, Lopez-Garcia Diego. Influence of the gravity framing system on the collapse performance of special steel moment frames[J]. Journal of Constructional Steel Research, 2014, 101:351-362.
[21] 王焕诚. 考虑剪力分担率的钢框架组合墙结构安全性探析[J]. 建筑安全, 2009, 24(9):51-52. Wang Huancheng. Safety analysis of steel frame-composite wall structure considering shear distribution ratio[J]. Construction Safety, 2009, 24(9):51-52. (in Chinese)
[22] Aukeman L J, Laursen P. Evaluation of the ASCE 7-05 standard for dual systems:Response history analysis of a tall buckling-restrained braced frame dual system[C]. Structures Congress 2011, 2011:2707-2717.
[23] 陆新征, 顾栋炼, 周建龙, 等. 改变框架-核心筒结构剪力调整策略对其抗震性能影响的研究[J]. 工程力学, 2019, 36(1):183-191. Lu Xinzheng, Gu Donglian, Zhou Jianlong, et al. Influence of changing shear adjustment strategy on seismic performance of frame-core tube structure[J]. Engineering Mechanics, 2019, 36(1):183-191. (in Chinese)
[24] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[25] GB 50009-2012, 建筑结构荷载规范[S]. 北京:中国建筑工业出版社, 2012. GB 50010-2012, Load code for the design of building structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[26] 陆新征, 蒋庆, 缪志伟, 等. 建筑抗震弹塑性分析[M]. 北京:中国建筑工业出版社, 2015. Lu Xinzheng, Jiang Qing, Miao Zhiwei, et al. Elasto-plastic analysis of buildings against earthquake[M]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[27] Saatcioglu M, Razvi S R. Strength and ductility of confined concrete[J]. Journal of Structural Engineering, 1992, 118(6):1590-1607.
[28] FEMA P695, Quantification of building seismic performance factors[R]. Washington, DC:Federal Emergency Management Agency, 2009.
[29] 施炜, 叶列平, 陆新征, 等. 不同抗震设防RC框架结构抗倒塌能力的研究[J]. 工程力学, 2011, 28(3):41-48. Shi Wei, Ye Lieping, Lu Xinzheng, et al. Study on the collapse-resistant capacity of RC frames with different seismic fortification levels[J]. Engineering Mechanics, 2011, 28(3):41-48. (in Chinese)
[30] 李梦珂. 中美高层钢筋混凝土框架-核心筒结构抗震设计与评估[D]. 北京:清华大学, 2015. Li Mengke. Seismic design and evaluation of tall RC frame-core tube buildings in China and U.S.[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[31] Lu Xiao, Lu Xinzheng, Zhang Wankai, et al. Collapse simulation of a super high-rise building subjected to extremely strong earthquakes[J]. Science China Technological Sciences, 2011, 54(10):2549-2560.
[32] Lu Xinzheng, Lu Xiao, Guan Hong, et al. Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building[J]. Journal of Constructional Steel Research, 2013, 82:59-71.
[33] CECS 392:2014, 建筑结构抗倒塌设计规范[S]. 北京:中国计划出版社, 2014. CECS 392:2014, Code for anti-collapse design of building structures[S]. Chinese Planning Publishing House:Beijing, 2014. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[3] 张浩, 连鸣, 苏明周, 程倩倩, 关彬林. 含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(S1): 78-85.
[4] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[5] 赵宪忠, 戴柳丝, 黄兆祺, 任重. 钢货架结构研究现状与关键技术[J]. 工程力学, 2019, 36(8): 1-15.
[6] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式钢管混凝土格构柱拟动力试验研究[J]. 工程力学, 2019, 36(7): 67-78.
[7] 侯立群, 闫维明, 陈适才, 陆新征. 内置角钢改进夹心节点抗震性能研究与抗剪承载力计算[J]. 工程力学, 2019, 36(7): 79-88.
[8] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[9] 王宇航, 刘元九, 周绪红. 腹板屈曲约束钢连梁抗震性能研究[J]. 工程力学, 2019, 36(6): 49-59,69.
[10] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[11] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[12] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[13] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[14] 李腾飞, 苏明周, 隋龑, 马磊, 韩丹. 高强钢组合K形偏心支撑钢框架抗震性能混合试验[J]. 工程力学, 2019, 36(4): 100-108,124.
[15] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[3] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[4] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[5] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[6] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[7] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[8] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[9] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[10] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日