工程力学 ›› 2019, Vol. 36 ›› Issue (11): 121-129,182.doi: 10.6052/j.issn.1000-4750.2018.11.0628

• 土木工程学科 • 上一篇    下一篇


阚黎黎, 章志, 张利, 刘卫东   

  1. 上海理工大学环境与建筑学院, 上海 200093
  • 收稿日期:2018-11-23 修回日期:2019-05-07 出版日期:2019-11-13 发布日期:2019-05-17
  • 通讯作者: 阚黎黎(1980-),女,云南宣威人,副教授,博士,主要从事高性能绿色建材研究(E-mail:kanlili@usst.edu.cn). E-mail:kanlili@usst.edu.cn
  • 作者简介:章志(1995-),男,安徽铜陵人,硕士生,主要从事高性能绿色建材力学性能研究(E-mail:2864467433@qq.com);张利(1995-),女,江苏无锡人,硕士生,主要从事高性能绿色建材力学性能研究(E-mail:liv_zhanglu@163.com);刘卫东(1961-),男,山东济南人,教授,博士,主要从事新型建材研究(E-mail:wdliu@126.com).
  • 基金资助:


KAN Li-li, ZAHNG Zhi, ZHANG Li, LIU Wei-dong   

  1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2018-11-23 Revised:2019-05-07 Online:2019-11-13 Published:2019-05-17

摘要: 超高韧性纤维增强水泥基复合材料(ECC)因其出色的高韧性及多缝开裂特性备受关注,然而一直以来因配比中进口PVA纤维的使用导致高昂的价格限制了其在工程中的大规模应用。为了进一步降低成本及实现原材料的本土化,研究低成本国产PVA纤维对ECC力学性能的影响十分必要。通过单轴拉伸、压缩、三点抗弯及单裂缝拉伸等宏观、细观试验研究两种国产低成本PVA-ECC的力学性能,并借助纤维分散性试验及SEM,探讨纤维的分散等微观特征。结果表明,低成本国产纤维在基体中具有良好的分散性,尽管其纤维桥接余能、最大桥接应力及PSH指数低于进口纤维,但均能满足能量与强度准则,即便相对较差的纤维A试件的3 d、7 d及28 d的极限拉伸应变也可达到2.52%、3.34%及3.08%,可实现良好的应力硬化行为及饱和多缝开裂特性,满足ECC的使用要求。

关键词: 低成本, PVA纤维, 超高韧性纤维增强水泥基复合材料, 单轴拉伸, 三点抗弯, 单裂缝拉伸

Abstract: Engineered Cementitious Composites (ECC) have attracted much attention because of its high toughness and multiple cracking characteristics. However, the use of imported PVA fibers in the past has resulted in high price which limited large scale engineering applications. To reduce the cost and achieve the localization of raw materials, it is necessary to study the influence of low-cost domestic PVA fibers on the mechanical properties of ECCs. The mechanical properties of two kinds of domestic low-cost PVA-ECCs were studied by macroscopic and mesoscopic experiments, including uniaxial tensile, compression, three-point bending and single-crack tensile tests. The microscopic features such as the fiber dispersion was investigated by the tests and SEM. The results show that the low-cost domestic fibers have good dispersibility in the matrix. Although the fiber bridging complementary energy, maximum bridging stress and the PSH index are lower than those of imported fibers, they meet the energy and strength criteria. The tensile strain capacity of the relatively poor fiber A reached 2.52%, 3.34% and 3.08% at 3 d, 7 d and 28 d, respectively, which exhibited good stress hardening behavior and saturated multi-cracking characteristics and satisfies the application requirements of ECC.

Key words: low-cost, PVA fiber, engineered cementitious composite (ECC), uniaxial tensile property, three-point bending, single-crack tensile


  • TU528.58
[1] 傅柏权, 蔡向荣. 高韧性混凝土拉伸荷载下的裂缝控制能力研究[J]. 工程力学, 2016, 33(增刊1):184-189. Fu Baiquan, Cai Xiangrong. Research on crack control ability of high toughness concrete under tensile load[J]. Engineering Mechanics, 2016, 33(Suppl 1):184-189. (in Chinese)
[2] Li V C. Integrated structures and materials design[J]. Materials and Structures, 2007, 40(4):387-396.
[3] 蔡向荣, 徐世烺. UHTCC薄板弯曲荷载-变形硬化曲线与单轴拉伸应力-应变硬化曲线对应关系研究[J]. 工程力学, 2010, 27(1):8-16. Cai Xiangrong, Xu Shilang. Study on corresponding relationships between flexural load-deformation hardening curves and tensile stress-strain hardening curves of UHTCC[J]. Engineering Mechanics, 2010, 27(1):8-16. (in Chinese)
[4] Wu C, Li V C. CFRP-ECC hybrid for strengthening of the concrete structures[J]. Composite Structures, 2017, 178:372-382.
[5] Li V C, Leung C K. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11):2246-2264.
[6] Li V C, Wang S, Wu C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6):483-492.
[7] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45-56. Xu Shiliang, Li Hengdong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41(6):45-56. (in Chinese)
[8] 王英俊, 梁兴文, 吴继伟. 纤维增强混凝土梁柱节点受剪承载力计算模型研究[J]. 工程力学, 2016, 33(3):77-85. Wang Yingjun, Liang Xingwen, Wu Jiwei. Calculation model of shear capacity of fiber-reinforced concrete beam-column joint[J]. Engineering Mechanics, 2016, 33(3):77-85. (in Chinese)
[9] Yu K Q, Wang Y C, Yu J T, et al. A strain-hardening cementitious composites with the tensile capacity up to 8%[J]. Construction and Building Materials, 2017, 137:410-419.
[10] Li V C. On engineered cementitious composites (ECC)[J]. Journal of Advanced Concrete Technology, 2003, 1(3):215-230.
[11] Wu C, Pan Z F, Kim K S. Theoretical and experimental study of effective shear stiffness of reinforced ECC Columns[J]. International Journal of Concrete Structures and Materials, 2017, 11(4):585-597.
[12] Li V C. Tailoring ECC for special attributes:a review[J]. International Journal of Concrete Structures and Materials, 2012, 6(3):135-144.
[13] Zhou J, Qian S, Ye G, et al. Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence[J]. Cement and Concrete Composites, 2012, 34(3):342-348.
[14] 庞超明, 孙伟. 高掺量粉煤灰高延性水泥基复合材料的制备和性能[J]. 硅酸盐学报, 2009, 37(12):2071-2080. Pang Chaoming, Sun Wei. Preparation and properties of high ductility cementitious composites with high content of fly-ash[J]. Journal of the Chinese Ceramic Society, 2009, 37(12):2071-2080. (in Chinese)
[15] Yang E H. Designing added functions in engineered cementitious composites[D]. Ann Arbor:University of Michigan, 2008.
[16] Ma H, Cai J M, Lin Z, et al. CaCO3 whisker modified engineered cementitious composite with local ingredients[J]. Construction and Building Materials, 2017, 151:1-8.
[17] Zhang J, Li V C. Monotonic and fatigue performance in bending of fiber-reinforced engineered cementitious composite in overlay system[J]. Cement and Concrete Research, 2002, 32(3):415-423.
[18] Maalej M, Li V C. Flexural strength of fiber cementitious composites[J]. Journal of Materials in Civil Engineering, 1994, 6(3):390-406.
[19] Li V C. Engineered cementitious composites-Tailored composites through micromechanical modeling, fiber-reinforced concrete:present and the future[J]. Canadian Society for Civil Engineering, 1998, 64(5):64-80.
[20] Kanda T, Li V C. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix[J]. Journal of Materials in Civil Engineering, 1998, 10(1):5-13.
[21] Li V C, Wu C, Wang S X, et al. Interface tailoring for strainhardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2002, 99(5):463-472.
[22] Lin Z, Kanda T, Li V C. On interface property characterization and performance of fiber reinforced cementitious composites[J]. Concrete Science and Engineering, 1999(1):173-180.
[23] Pan Z F, Wu C, Liu J Z, et al. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVAECC)[J]. Construction and Building Materials, 2015, 78:397-404.
[24] Qian S, Zhang Z G. Development of engineered cementitious composites with local ingredients[J]. Journal of Southeast University (English Edition), 2012, 28(3):327-338.
[25] Ma H, Qian S Z, Zhang Z G, et al. Tailoring engineered cementitious composites with local ingredient[J]. Construction and Building Materials, 2015, 101:584-595.
[26] Li V C. Performance driven design of fiber reinforced cementitious composites[J]. Proceedings of Rilem International Symposium on Fiber Reinforced Concrete, 1992, 12:89-93.
[27] Kanda T. New micromechanics design theory for pseudostrain hardening cementitious composite[J]. Journal of Engineering Mechanics, 1999, 125(4):373-381.
[28] Li V C, Leung C K Y. Theory of steady state and multiple cracking of random discontineous fiber reinforced brittle matrix composites[J]. Journal of Engineering Mechanics, 1992, 118(11):2246-2264.
[29] Zhang Z G, Zhang Q. Matrix tailoring of engineered cementitious composites (ECC) with non-oil-coated, low tensile strength PVA fiber[J]. Construction and Building Materials, 2018, 161:420-431.
[1] 代洁, 邓明科, 陈佳莉. 基于材料延性的高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2018, 35(2): 124-132.
[2] 杨简, 陈宝春, 沈秀将, 林毅焌. UHPC单轴拉伸试验狗骨试件优化设计[J]. 工程力学, 2018, 35(10): 37-46,55.
[3] 韩建平, 刘文林. 高轴压比配筋PVA纤维增强混凝土柱抗震性能试验研究[J]. 工程力学, 2017, 34(9): 193-201.
[4] 胡小玲, 刘秀, 李明, 罗文波. 炭黑填充橡胶超弹性本构模型的选取策略[J]. 工程力学, 2014, 31(5): 34-42.
[5] 刘智光, 陈健云. 考虑材料组成特性的混凝土轴拉破坏过程细观数值模拟[J]. 工程力学, 2012, 29(7): 136-146.
[6] 杜修力;窦国钦;李 亮;田予东. 纤维高强混凝土的动态力学性能试验研究[J]. 工程力学, 2011, 28(4): 138-144,.
[7] 张朝晖;高原;聂君锋;胡强;庄茁. 含约束薄膜的单轴拉伸的理论与数值研究[J]. 工程力学, 2011, 28(11): 31-037.
[8] 高淑玲;徐世烺. 单边切口薄板研究聚乙烯醇纤维增强水泥基复合材料断裂韧性[J]. 工程力学, 2007, 24(11): 0-018.
Full text



[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 王芳林;高伟;陈建军. 风荷激励下天线结构的随机振动分析[J]. 工程力学, 2006, 23(2): 168 -172 .
[3] 王锋;唐国金;李道奎. 层合板中压电作动器最优厚度和嵌入位置研究[J]. 工程力学, 2006, 23(4): 166 -171, .
[4] 程远胜;杨振宇;汪刚. 基于受控结构振型的损伤定位分步识别方法[J]. 工程力学, 2006, 23(6): 54 -59 .
[5] 陈波;武岳;沈世钊. 张拉式膜结构抗风设计[J]. 工程力学, 2006, 23(7): 65 -71,5 .
[6] 顾明;叶丰. 高层建筑风致响应和等效静力风荷载的特征[J]. 工程力学, 2006, 23(7): 93 -98 .
[7] 曾纪杰;傅衣铭. 正交各向异性圆柱壳的弹塑性屈曲分析[J]. 工程力学, 2006, 23(10): 25 -29 .
[8] 陆新征;张炎圣;何水涛;卢 啸. 超高车辆撞击桥梁上部结构研究:损坏机理与撞击荷载[J]. 工程力学, 2009, 26(增刊Ⅱ): 115 -125 .
[9] 马恺泽;梁兴文;李 斌. 高轴压比方钢管高强混凝土柱抗震性能研究[J]. 工程力学, 2010, 27(03): 155 -162 .
[10] 何 庆;宣海军;廖连芳;洪伟荣;吴荣仁. 薄靶板受叶片形弹体撞击的数值仿真研究[J]. 工程力学, 2010, 27(4): 234 -239 .