工程力学 ›› 2019, Vol. 36 ›› Issue (11): 248-256.doi: 10.6052/j.issn.1000-4750.2018.11.0625

• 其他工程学科 • 上一篇    

内镶式滴灌管主流道水流运动特性研究

丁法龙, 茅泽育, 韩凯   

  1. 清华大学水利水电工程系, 北京 100084
  • 收稿日期:2018-11-20 修回日期:2019-09-23 出版日期:2019-11-13 发布日期:2019-04-29
  • 通讯作者: 丁法龙(1991-),男,山东人,博士生,从事水力学及河流动力学研究(E-mail:dflaizy@163.com). E-mail:dflaizy@163.com
  • 作者简介:茅泽育(1962-),男,浙江人,教授,博士,主要从事水力学及河流动力学研究(E-mail:maozy@mails.tsinghua.edu.cn);韩凯(1995-),男,浙江人,硕士生,从事水力学及河流动力学研究(E-mail:hk17@mails.tsinghua.edu.cn).
  • 基金资助:
    国家重点研发项目(2016YFC0402504)

HYDRAULIC PERFORMANCES IN MAINSTREAM OF DRIP IRRIGATION PIPE

DONG Fa-long, MAO Ze-yu, HAN Kai   

  1. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-11-20 Revised:2019-09-23 Online:2019-11-13 Published:2019-04-29

摘要: 以质量和动量守恒定理为依据,建立了以内镶式滴灌管为例的多孔管流动数学模型,并结合水力试验数据,推导得出了内镶式滴灌管内部主流道的沿程压力分布模型。多孔管流动的数学模型表明:多孔管主流道内的压力大小及变化取决于摩阻作用和动量交换作用的相对大小,其中摩阻作用使得压力降低,动量交换作用使压力升高,多孔管压力分布模型可以归结为求解管路摩阻系数和动量交换系数。滴灌管水力试验表明:滴灌管沿程纵向流速的分布指数与滴头自身特性(流量系数、流态指数)无关,而与管路上的滴头个数呈良好的线性相关关系。以水力试验数据分析与理论推导为基础,得出动量交换系所对应的经验表达式,结合BLASIUS摩阻系数计算公式对滴灌管压力分布模型进行求解,模型预测值与实测值吻合良好。该压力分布模型中,将沿程压力分布的影响因素归结为滴灌管长径比和管首雷诺数,便于优化结构设计及确定最佳运行工况。该文可为多孔管路水力计算及变质量流动模型研究提供一定参考。

关键词: 滴灌管, 主流道, 变质量流动, 摩阻, 动量交换, 沿程压力分布

Abstract: Based on the theorem of mass and momentum conservation, this study established an analytical model for variable mass flow, and thusly developed a mathematical expression for the longitudinal pressure distribution along the mainstream of a drip irrigation pipe combined with experimental data. The established model shows that the longitudinal pressure distribution in the drip irrigation pipe is dependent on friction head loss and momentum exchange, and that friction head loss tends to decrease the pressure and the momentum exchange tends to increase it. The solution of the longitudinal pressure distribution model is attributed to determining friction and momentum exchange coefficients. The test results show that distribution index of longitudinal velocity is independent of the characteristic parameters of the drip irrigation pipe, but linear with the number of drip emitters. The expression for the momentum exchange coefficient was obtained by theoretical derivation and regression analysis, and the friction coefficient can be calculated by Blasius formula. The analytical model for variable mass flow and the longitudinal pressure expression for the drip irrigation pipe was then solved. The calculated values of the longitudinal pressure along the drip irrigation pipe agreed well with measured values. In the longitudinal pressure expression, pressure is affected by a pipe-structure parameter (length-diameter ratio)and a flow parameter (entrance Reynolds number). The expression helps guide the structural design and optimize operating conditions, because the two parameters are both directly controllable. This study offers a new thought for the analysis of variable mass flow, and the results would provide a scientific basis for the hydraulic calculation of drip irrigation.

Key words: drip irrigation pipe, mainstream way, variable mass flow, friction resistance, momentum exchange, longitudinal pressure distribution

中图分类号: 

  • S275.6
[1] Baiamonte G. Advances in designing drip irrigation laterals[J]. Agricultural Water Management, 2018, 199:157-174.
[2] Reinders F B, Niekerk A S V. Technology smart approach to keep drip irrigation systems functional[J]. Irrigation & Drainage, 2018, 67(1):82-88.
[3] Stoochnoff J A, Graham T, Dixon M A. Drip irrigation scheduling for container grown trees based on plant water status[J]. Irrigation Science, 2018, 36(2):1-8.
[4] Francisco Alcon, María Dolores de-Miguel, Michael Burton. Duration analysis of adoption of drip irrigation technology in southeastern spain[J]. Technological Forecasting and Social Change, 2011, 78(6):991-1001.
[5] 张国祥, 吴普特. 滴灌系统滴头设计水头的取值依据[J]. 农业工程学报, 2005, 21(9):20-22. Zhang Guoxiang, Wu Pute. Determination of the design working head of emitter[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2005, 21(9):20-22. (in Chinese)
[6] Wu I P, Gitlin H M. Design of irrigation lines[J]. Technical Bulletin of the University of Hawaii, 1974a, 96(1):3-29.
[7] Wu I P, Gitlin H M. Drip irrigation design based on uniformity[J]. Transactions of the ASAE, 1974b, 17(3):429-432.
[8] Wu I P. A uni-plot for drip irrigation lateral and submain design[J]. Transactions of the ASAE, 1985, 28(2):522-528.
[9] Jain S K, Singh K K, Singh R P, et al. Micro-irrigation lateral design using lateral discharge equation[J]. Journal of Irrigation and Drainage Engineering, 2002, 128(2):125-128.
[10] Kang Y. H., Nishiyam A. S. Design of micro-irrigation sub-main units[J]. ASCE. Journal of Irrigation and Drainage Engineering, 1996, 122(2):83-89.
[11] Kang Y H, Nishiyama S. Hydraulic analysis of microirrigation submain nuits[J]. Transactions of the ASAE, 1995, 38(5):1377-1384.
[12] Kang Y H, Nishiyama S. A simplified method for design of microirrigation laterals[J]. Transactions of the ASAE, 1996d, 39(5):1681-1687.
[13] Demir V, Yurdem H, Degirmencioglu A, et al. Development of prediction models for friction losses in drip irrigation laterals equipped with integrated in-line and on-line emitters using dimensional analysis[J]. Bio-systems Engineering, 2007, 96(4):617-631.
[14] Wang Y, Zhu D, Lin Z. Dimensional analysis for estimating the local head losses in trickle laterals equipped with integrated in-line emitters[J]. Journal of Hydraulic Engineering, 2015, 46(5):602-611.
[15] Gomes A W A, Frizzone J A, Rettore Neto O, et al. Local head losses for integrated drippers in polyethylene pipes[J]. Engenharia Agrícola, 2010, 30(3):435-446.
[16] Zitterell D B, Frizzone J A, Neto O R. Dimensional analysis approach to estimate local head losses in microirrigation connectors[J]. Irrigation Science, 2014, 32(3):169-179.
[17] Zitterell D B, Frizzone J A, Neto O R. Dimensional analysis approach to estimate local head losses in microirrigation connectors[J]. Irrigation Science, 2014, 32(3):169-179.
[18] Sadeghi S H, Peters R T, Lamm F R. Design of Zero Slope Microirrigation Laterals:Effect of the Friction Factor Variation[J]. Journal of Irrigation & Drainage Engineering, 2015, 141(10):04015012.
[19] 王新坤. 基于二分法的微灌毛管水力设计[J]. 排灌机械工程学报, 2007, 25(6):27-30. Wang Xinkun. Hydraulic design of micro-irrigation laterals based on bisection method[J]. Drainage and Irrigation Machinery, 2007, 25(6):27-30. (in Chinese)
[20] 白丹, 王新. 基于遗传算法的多孔变径管优化设计[J]. 农业工程学报, 2005, 21(2):42-45. Bai Dan, Wang Xin. Optimum design for tapered diameter pipeline with multiple outlets based on genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(2):42-45. (in Chinese)
[21] Martí P, Provenzano G, Royuela Á, et al. Integrated emitter local loss prediction using artificial neural networks[J]. Journal of Irrigation & Drainage Engineering, 2010, 136(1):11-22.
[22] Provenzano G, Dio P D, Salvador G P. New computational fluid dynamic procedure to estimate friction and local losses in coextruded drip laterals[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(6):520-527.
[23] 王福军, 王文娥. 滴头流道CFD分析的研究进展与问题[J]. 农业工程学报, 2006, 22(7):188-192. Wang Fujun, Wang Wen'e. Research progress in analysis of flow passage in irrigation emitters using computational fluid dynamics techniques[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7):188-192. (in Chinese)
[24] 王新坤, 许文博, 赵坤,等. 基于CFD的多孔管热风数值模拟与设计方法[J]. 排灌机械工程学报, 2011, 29(1):82-86. Wang Xinkun, Xu Wenbo, Zhao Kun, et al. Numerical simulation and design method of hot air for porous pipe based on CFD[J]. Drainage and Irrigation Machinery, 2011, 29(1):82-86. (in Chinese)
[25] 丁法龙, 茅泽育, 王文娥,等. 滴灌管主流道沿程压力分布模型及验证[J]. 农业工程学报, 2019, 35(3):117-124. Ding Falong, Mao Zeyu, Wang Wen'e, et.al. Modelling and verification of pressure distribution along mainstream in drip irrigation pipe[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3):117-124. (in Chinese)
[26] McNown J S. Mechanics of manifold flow[J]. Transactions of the American Society of Civil Engineers, 1954, 119(7):1103-1118.
[27] 杜涛, 刘焕芳, 金瑾. 沿程出流多孔流体分布管压力分布特性[J]. 化学工程, 2014, 42(9):48-52. Du Tao, Liu Huanfang, Jin Jin. Pressure distribution characteristics of perforated pipe outflow along pipeline[J]. Chemical Engineering (China), 2014, 42(9):48-52. (in Chinese)
[28] Bagarello V, Ferro V, Provenzano G, et al. Evaluating pressure losses in drip-irrigation lines[J]. Journal of Irrigation & Drainage Engineering, 1997, 123(1):1-7.
[29] Pumo D, Provenzano G. Experimental Analysis of Local Pressure Losses for Microirrigation Laterals[J]. Journal of Irrigation & Drainage Engineering, 2004, 130(4):318-324.
[1] 王新泉, 张世民, 崔允亮, 周星德. 考虑异形效应Y形桩侧摩阻力产生附加应力研究[J]. 工程力学, 2016, 33(8): 194-204.
[2] 胡方健. 钢绞线斜拉索在鞍座内的受力状态分析[J]. 工程力学, 2016, 33(11): 140-147.
[3] 白福波. 侧向预压增量法解析土压力[J]. 工程力学, 2015, 32(增刊): 20-26.
[4] 贺成斌, 赵明华, 雷勇. 基于荷载传递法的嵌岩桩负摩阻力计算研究[J]. 工程力学, 2014, 31(11): 110-115.
[5] 王新泉 陈永辉 张世民 齐昌广 陈 龙. 反拱曲面X形异形桩产生附加应力计算方法研究[J]. 工程力学, 2012, 29(12): 220-227.
[6] 赵明华 雷 勇. 基于分形理论的人工挖孔嵌岩桩承载特性分析[J]. 工程力学, 2012, 29(12): 127-133.
[7] 周 慧;罗松南;孙 丹. 考虑水平摩阻力的弹性地基梁大变形弯曲分析[J]. 工程力学, 2011, 28(1): 43-047,.
[8] 李俊花;孙昭晨;崔 莉. 基于BP神经网络原理的长输管道泄漏点定位及其实验研究[J]. 工程力学, 2010, 27(8): 169-173.
[9] 李 飒;韩志强;杨清侠;周扬锐;蒋宝凡. 海洋平台大直径超长桩成桩机理研究[J]. 工程力学, 2010, 27(8): 241-245.
[10] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38-044.
[11] 赵明华;马缤辉;张 玲. 考虑水平摩阻力的弹性地基有限长梁分步计算方法[J]. 工程力学, 2009, 26(9): 16-023.
[12] 范慕辉;焦永树;于文英. 三维井孔轴线的几何描述与套管摩阻的数值模拟[J]. 工程力学, 2005, 22(2): 195-199,.
[13] 李珠;王显耀;梁卫民;朱健. 土对锚拉杆的摩阻力实验研究与分析[J]. 工程力学, 2000, 17(1): 120-124.
[14] 黄锋;李广信;郑继勤. 单桩在压与拔荷载下桩侧摩阻力的有限元计算研究[J]. 工程力学, 1999, 16(6): 97-101,.
[15] 李爱群;丁大钧;曹征良. 带摩阻控制装置双肢剪力墙模型的振动台试验研究[J]. 工程力学, 1995, 12(3): 70-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[2] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[3] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[4] 陈誉;刘飞飞. 正对称Pratt 桁架直腹杆受压大偏心N型圆钢管节点静力性能实验研究[J]. 工程力学, 2011, 28(11): 170 -177 .
[5] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[6] 王小兵;刘扬;崔海清;韩洪升. 螺旋流抑制杆管偏磨的PIV实验研究[J]. 工程力学, 2011, 28(11): 225 -230 .
[7] 郜新军;赵成刚;刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J]. 工程力学, 2011, 28(11): 237 -243 .
[8] 吕伟荣;王猛;刘锡军. 灌芯混凝土砌块砌体破坏准则研究[J]. 工程力学, 2011, 28(11): 251 -256 .
[9] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[10] 张嘎;张建民. 土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J]. 工程力学, 2006, 23(2): 72 -77 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日