工程力学 ›› 2019, Vol. 36 ›› Issue (11): 41-49.doi: 10.6052/j.issn.1000-4750.2018.11.0620

• 土木工程学科 • 上一篇    下一篇

盾构管片UHPC加固技术及力学性能分析

陈仁朋, 鲁立, 张阳, 吴怀娜   

  1. 湖南大学土木工程学院, 长沙 410082
  • 收稿日期:2018-11-20 修回日期:2019-04-30 出版日期:2019-11-13 发布日期:2019-05-09
  • 通讯作者: 陈仁朋(1972-),男,浙江衢州人,教授,博士,主要从事岩土工程方面的教学和科研工作(E-mail:chenrp@hnu.edu.cn). E-mail:chenrp@hnu.edu.cn
  • 作者简介:鲁立(1994-),男,湖北石首人,硕士生,主要从事岩土工程方面的科研工作(E-mail:luli@hnu.edu.cn);张阳(1971-),男,辽宁辽阳人,副教授,博士,主要从事桥梁结构加固方面的科研工作(E-mail:zhangbridge@163.com);吴怀娜(1987-),女,福建泉州人,副教授,博士,主要从事岩土工程方面的科研工作(E-mail:whn0507@126.com).
  • 基金资助:
    国家自然科学基金项目(51878267,41807512);中建隧道建设有限公司技术开发课题项目(17430102000417);长沙市科技局课题项目(cskq1703051);湖南省自然科学基金优秀青年科学基金项目(2019JJ30006)

REINFORCED TECHNOLOGY AND MECHANICAL PROPERTIES OF SHIELD TUNNEL LINING WITH UHPC

CHEN Ren-peng, LU Li, ZHANG Yang, WU Huai-na   

  1. College of Civil Engineering, Hunan University, Changsha 410082, China
  • Received:2018-11-20 Revised:2019-04-30 Online:2019-11-13 Published:2019-05-09

摘要: 针对盾构隧道运行期管片破损问题,提出了利用具有优异的力学性能和耐久性能的超高性能混凝土(UHPC)材料加固管片的方法。建立了UHPC加固通缝拼装管片的三维非线性有限元模型,讨论了加固前后管片力学特性和变形行为,揭示了UHPC加固的承载机理和破坏模式。在此基础上,探讨了不同厚度、配筋率的UHPC加固层对加固效果的影响。研究表明,UHPC加固盾构隧道不仅能有效控制管片变形,提高结构承载力,并且在满足抗裂性能的条件下,顶底相对位移继续发展的容许值可以达到厘米级。该文研究将为隧道管片加固提供新思路。

关键词: 隧道工程, 超高性能混凝土, 结构加固, 管片, 数值分析

Abstract: The damage problem of shield tunnel-segments during the operation of a shield tunnel is becoming increasingly serious in the world. Thusly, a new method is proposed to reinforce the tunnel lining based on the ultra-high-performance concrete (UHPC) which has high performance in the mechanical properties and durability. A three-dimensional nonlinear finite element model for reinforcing the shield tunnel with UHPC is established. This method discusses the mechanical properties and deformation behavior of structures and reveals the bearing mechanism and failure mode of the reinforcement with UHPC. Subsequently, the influence of different thickness and reinforcement ratio of UHPC reinforcement layer on the structural reinforcement is investigated. The simulation results indicate that this new method for reinforcing the shield tunnel with UHPC can effectively control the deformation of the segment and enhance the bearing capacity of the structure. Furthermore, the allowable value of the further development of the relative displacement between top and bottom can reach centimeter level under the condition of satisfying the crack resistance. This research results provide a basis for further research and development of this new method.

Key words: tunnel engineering, UHPC, structure reinforcement, segments, numerical analysis

中图分类号: 

  • U457.3
[1] 董飞, 房倩, 张顶立, 等. 北京地铁营运隧道病害状态分析[J]. 土木工程学报, 2017, 50(6):104-113. Dong Fei, Fang Qian, Zhang Dingli, et al. Analysis on defects of operational metro tunnels in Beijing[J]. China Civil Engineering Journal, 2017, 50(6):104-113. (in Chinese)
[2] 何川, 封坤, 方勇. 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50(1):97-109. He Chuan, Feng Kun, Fang Yong. Review and prospects on constructing technologies of metro tunnels using shield tunnelling method[J]. Journal of Southwest Jiaotong University, 2015, 50(1):97-109. (in Chinese)
[3] Chang C T, Wang M J, Chang C T, et al. Repair of displaced shield tunnel of the Taipei rapid transit system[J]. Tunnelling and Underground Space Technology, 2001, 16(3):167-173.
[4] Zhao H, Xian L, Bao Y, et al. Simplified nonlinear simulation of shield tunnel lining reinforced by epoxy bonded steel plates[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2016, 51:362-371.
[5] 毕湘利, 柳献, 王秀志, 等. 内张钢圈加固盾构隧道结构极限承载力的足尺试验研究[J]. 土木工程学报, 2014, 47(11):128-137. Bi Xiangli, Liu Xian, Wang Xiuzhi, et al. Experimental study on the ultimate load-bearing capacity of deformed segmental tunnel linings strengthened by steel plates[J]. China Civil Engineering Journal, 2014, 47(11):128-137. (in Chinese)
[6] Liu Xian, Jiang Zijie, Zhang Lele. Experimental investigation of the ultimate bearing capacity of deformed segmental tunnel linings strengthened by epoxy-bonded filament wound profiles[J]. Structure and Infrastructure Engineering, 2017, 13(10):1268-1283.
[7] Liu Dejun, Huang Hongwei, Yue Qingrui, et al. Behaviour of tunnel lining strengthened by textile reinforced concrete[J]. Structure and Infrastructure Engineering, 2016, 12(8):964-976.
[8] 王淑莹. FRP网格加固隧道结构性能研究[D]. 南京:东南大学, 2014. Wang Shuying. Study on FRP grid reinforcement of tunnel structures[D]. Nanjing:Southeast University, 2014. (in Chinese)
[9] Talayeh Noshiravani, EugenBrühwiler. Rotation capacity and stress redistribution ability of R-UHPFRC-RC composite continuous beams:An experimental investigation[J]. Materials and Structures, 2013, 46(12):2013-2028.
[10] Muhammad Safdar, Takashi Matsumoto, KoKakuma. Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Composite Structures, 2016, 157:448-460.
[11] 邵旭东, 曹君辉, 易笃韬, 等. 正交异性钢-薄层RPC组合桥面基本性能研究[J]. 中国公路学报, 2012, 25(2):40-45. Shao Xudong, Cao Junhui, Yi Dutao, et al. Research on basic performance of composite bridge deck system with orthotropic steel deck and thin RPC layer[J]. China Journal of Highway and Transport, 2012, 25(2):40-45. (in Chinese)
[12] Al-Osta M A, Isa M N, Baluch M H, et al. Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete[J]. Construction and Building Materials, 2017, 134:279-296.
[13] 孙启力, 路新瀛, 聂鑫, 等. 非蒸养UHPC-钢板结构界面的受拉和剪切性能试验研究[J]. 工程力学, 2017, 34(9):167-174, 192. Sun Qili, Lu Xinying, Nie Xin, et al. Experimental research on tensile and shear behavior of the interface between non-steam-cured UHPC and steel plate structure[J]. Engineering Mechanics, 2017, 34(9):167-174, 192. (in Chinese)
[14] Bache H H. NyBeton-NyTeknologi[M]. Denmark:Aalborg Portland, 1992.
[15] Liu X, Jiang Z, Yuan Y, et al. Experimental investigation of the ultimate bearing capacity of deformed segmental tunnel linings strengthened by epoxy-bonded steel plates[J]. Structure and Infrastructure Engineering, 2017:1-16.
[16] Birtel V, Mark P. Parameterised finite element modelling of RC beam shear failure[C]//Proceedings of the 19th Annual International ABAQUS Users' Conference. Boston, USA, 2006:95-108.
[17] Hussein Husam H, Walsh Kenneth K, Sargand Shad M, et al. Steinberg, modeling the shear connection in adjacent box-beam bridges with ultrahigh-performance concrete joints. I:Model calibration and validation[J]. Journal of Bridge Engineering, 2017, 22(8):04017043.
[18] 张哲. 钢-配筋UHPC组合桥面结构弯曲受拉性能研究[D]. 长沙:湖南大学, 2016. Zhang Zhe. Bending behaviors of composite bridge deck system composed of OSD and reinforced UHPC layer[D]. Changsha:Hunan University, 2016. (in Chinese)
[19] Cao Junhui, Shao Xudong, Zhang Zhe, et al. Retrofit of an orthotropic steel deck with compact reinforced reactive powder concrete[J]. Structure and Infrastructure Engineering, 2016, 12(3):411-429.
[20] 刘德军, 黄宏伟, 薛亚东, 等. 纤维编织网增强混凝土补强隧道衬砌力学性能研究[J]. 工程力学, 2014, 31(7):91-98, 111. Liu Dejun, Huang Hongwei, Xue Yadong, et al. Research on behavior of tunnel lining strengthened by textile-reinforced concrete[J]. Engineering Mechanics, 2014, 31(7):91-98, 111. (in Chinese)
[1] 梁兴文, 汪萍, 徐明雪, 于婧, 李林. 免拆UHPC模板RC梁受弯性能试验及承载力分析[J]. 工程力学, 2019, 36(9): 95-107.
[2] 李聪, 陈宝春, 黄卿维. 超高性能混凝土圆环约束收缩试验研究[J]. 工程力学, 2019, 36(8): 49-58.
[3] 徐明雪, 梁兴文, 汪萍, 王照耀. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8): 70-78.
[4] 梁兴文, 王莹, 于婧, 李林. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析[J]. 工程力学, 2019, 36(7): 146-155.
[5] 余朔, 金浩, 周顺华, 毕湘利. 氯离子及迷流共同作用下持荷盾构管片钢筋锈层形态[J]. 工程力学, 2019, 36(7): 174-183.
[6] 杨俊芬, 程锦鹏, 翟伟, 张文喆. 内填脱硫石膏砌块墙体的新型装配式钢框架抗震性能研究[J]. 工程力学, 2019, 36(6): 147-156.
[7] 孙振宇, 张顶立, 房倩. 隧道锚固系统的协同作用及设计方法[J]. 工程力学, 2019, 36(5): 53-66,75.
[8] 梁兴文, 汪萍, 徐明雪, 王照耀, 于婧, 李林. 配筋超高性能混凝土梁受弯性能及承载力研究[J]. 工程力学, 2019, 36(5): 110-119.
[9] 梁东, 金浩, 肖军华, 周顺华. 软土地区侧压损失对盾构隧道受力及变形的影响[J]. 工程力学, 2019, 36(5): 148-156,175.
[10] 齐春, 何川, 封坤, 彭祖昭, 汤印, 代聪. 深部复合地层管片衬砌与可压缩层联合支护技术研究[J]. 工程力学, 2019, 36(4): 62-71,99.
[11] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[12] 徐明雪, 梁兴文, 于婧, 李林. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154,164.
[13] 郭影, 姜忻良, 曹东波, 白铁钧, 朱广轶, 冯春. 一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法[J]. 工程力学, 2018, 35(7): 139-149.
[14] 张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真[J]. 工程力学, 2018, 35(7): 167-175,186.
[15] 胡雄玉, 何川, 杨清浩, 吴迪. 管片衬砌配合陶粒可压缩层的支护结构与围岩相互作用模型[J]. 工程力学, 2018, 35(3): 86-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[4] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[5] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[6] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[7] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[8] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[9] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
[10] 李元齐;田村幸雄;沈祖炎. 单层网壳结构等效静风荷载分布估计[J]. 工程力学, 2006, 23(1): 57 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日