工程力学 ›› 2019, Vol. 36 ›› Issue (11): 27-33,61.doi: 10.6052/j.issn.1000-4750.2018.11.0619

• 基本方法 • 上一篇    下一篇

基于同伦分析方法的随机结构静力响应求解

张衡1, 王鑫1,2, 陈辉1,3, 黄斌1   

  1. 1. 武汉理工大学土木工程与建筑学院, 武汉 430070;
    2. 武昌首义学院, 武汉 430064;
    3. 武汉工程大学邮电与信息工程学院, 武汉 430073
  • 收稿日期:2018-11-17 修回日期:2019-05-27 出版日期:2019-11-13 发布日期:2019-10-12
  • 通讯作者: 黄斌(1968-),男,湖北荆门人,教授,博士,主要从事结构随机分析和结构可靠度方面的研究(E-mail:binhuang@whut.edu.cn). E-mail:binhuang@whut.edu.cn
  • 作者简介:张衡(1987-),男,湖北襄阳人,博士生,主要从事结构随机分析研究(E-mail:hengzhang@whut.edu.cn);王鑫(1979-),女,湖北潜江人,博士生,主要从事结构随机分析研究(E-mail:wxinstar@163.com);陈辉(1986-),男,湖北武汉人,博士生,主要从事结构随机分析研究(E-mail:huichenvip@163.com).
  • 基金资助:
    国家自然科学基金项目(51578431)

SOLUTION FOR STATIC RESPONSE OF STRUCTURE WITH RANDOM PARAMETERS BASED ON HOMOTOPY ANALYSIS METHOD

ZHANG Heng1, WANG Xin1,2, CHEN Hui1,3, HUANG Bin1   

  1. 1. School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China;
    2. Wuchang Shouyi University, Wuhan 430064, China;
    3. College of Post and Telecommunication, Wuhan Institute of Technology, Wuhan 430073, China
  • Received:2018-11-17 Revised:2019-05-27 Online:2019-11-13 Published:2019-10-12

摘要: 该文提出了一种基于同伦分析方法的求解含随机参数结构的静力响应的新方法。该方法将随机静力平衡方程重新进行同伦构造,利用含随机变量和趋近函数的同伦级数展式来表示结构的随机静力位移响应,该同伦级数的各阶确定性系数和趋近函数可通过对一系列的变形方程求解得到。由于趋近函数的引入,该同伦级数解相较于传统的摄动法有更大的收敛范围,对于含较大变异性随机参数的结构也能获得不错的求解精度。同时,该文提出了一种降维策略来提高该方法的计算效率。数值算例表明,与目前广泛应用的广义正交多项式展开法(GPC)相比,从计算精度上看,该文方法的3阶展开与GPC 2阶展开相当,该文方法的6阶展开与GPC 4阶展开相当,而计算时间上前者均明显少于后者。此外,该文方法也可以方便地应用到随机结构的几何非线性分析当中,并具有较好的计算精度和计算效率。

关键词: 随机静力响应分析, 同伦分析方法, 摄动法, 随机有限元方法, 几何非线性分析

Abstract: A homotopy-based method for calculating the stochastic responses of a structure under static loads involving random parameters is proposed. In this method, the static equilibrium equation is reconstructed based on the homotopy analysis method, the stochastic responses are represented by an infinite multivariate homotopy series of the random variables and approaching functions, and all the deterministic coefficients in the multivariate series are determined through solving a series of various order of deformation equations. This homotopy series solution obtained has a relatively large convergence domain due to the approach function compared with the Taylor series, which makes the series solution independent of random parameters with small fluctuation. Further, a dimension reduction strategy is proposed to improve the computational efficiency of the solution. The numerical examples show that:when considering the computational accuracy, compared with the recently widely used generalized polynomial chaos method (GPC), a third-order expansion of the proposed method is comparable with the second-order expansion of GPC, a sixth-order expansion of the proposed method is comparable with the fourth-order expansion of GPC. However, the computational effort of the former is significantly less than the latter. In addition, the presented method are also suitable for solving geometric nonlinearity problems.

Key words: random static problem, homotopy analysis method, perturbation method, stochastic finite element method, geometric nonlinearity analysis

中图分类号: 

  • TU311.4
[1] Stefanou G. The stochastic finite element method:Past, present and future[J]. Computer Methods in Applied Mechanics & Engineering, 2009, 198(9):1031-1051.
[2] Niederreiter H, Spanier J. Monte carlo and quasi-monte carlo methods[M]. Berlin:Springer, 2000:10-26.
[3] Melchers R E. Importance sampling in structural system[J]. Structural Safety, 1989, 6(1):3-10.
[4] Kleiber M, Hien T D. The stochastic finite element method[M]. Chichester:John Wiley, 1992:47-53.
[5] Kamiński M. On the dual iterative stochastic perturbation-based finite element method in solid mechanics with Gaussian uncertainties[J]. International Journal for Numerical Methods in Engineering, 2015, 104(11):1038-1060.
[6] Yamazaki F, Shinozuka M, Dasgupta G. Neumann expansion for stochastic finite element analysis[J]. Journal of Engineering Mechanics, 1988, 114(8):1335-1354.
[7] 王相玉. 随机有限元方程的解法与误差及随机介质的形态描述研究[D]. 北京:清华大学, 2015. Wang Xiangyu. Research on solution methods, error estimations for stochastic finite element equation and morphology descriptions of random media[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[8] Wang X Y, Cen S, Li C F, et al. A priori error estimation for the stochastic perturbation method[J]. Computer Methods in Applied Mechanics & Engineering, 2015, 286(3):1-21.
[9] Ghanem R G, Spanos P D. Stochastic finite elements:A spectral approach[M]. New York:Springer-Verlag, 1992:47-59.
[10] Li Y J, Huang B, Li C Q. Hybrid perturbation-Galerkin methods for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2017, 48:59-67.
[11] Gao W, Kessissoglou N J. Dynamic response analysis of stochastic truss structures under non-stationary random excitation using the random factor method[J]. Computer Methods in Applied Mechanics & Engineering, 2007, 196(25):2765-2773.
[12] 陈建军, 马洪波, 马娟, 等. 基于随机因子的结构分析方法[J]. 工程力学, 2012, 29(4):15-23. Chen Jianjun, Ma Hongbo, Ma Juan, et al. Structural analysis method based on random factor[J]. Engineering Mechanics, 2012, 29(4):15-23. (in Chinese)
[13] Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics[J]. Probabilistic Engineering Mechanics, 2004, 19(4):393-408.
[14] Falsone G, Impollonia N. A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters[J]. Computer Methods in Applied Mechanics & Engineering, 2002, 191(44):5067-5085.
[15] 杨绿峰, 李朝阳. 结构随机分析的向量型层递响应面法[J]. 工程力学, 2012, 29(11):58-64. Yang Lüfeng, Li Zhaoyang. Vectorial cooperative response surface method for stochastic analysis of structures[J]. Engineering Mechanics, 2012, 29(11):58-64. (in Chinese)
[16] Liao Shijun. Numerically solving non-linear problems by the homotopy analysis method[J]. Computational Mechanics, 1997, 20(6):530-540.
[17] 吉猛, 姜潮, 韩硕. 一种基于同伦分析的结构可靠性功能度量法[J]. 计算力学学报, 2015, 32(2):149-153. Ji Meng, Jiang Chao and Han Shuo. A performance measure approach of structural reliability based on homotopy analysis[J]. Chinese Journal of Computational Mechanics, 2015,32(2):149-153. (in Chinese)
[18] Huang B, Zhang H, Phoon K K. Homotopy approach for random eigenvalue problem[J]. International Journal for Numerical Methods in Engineering, 2018, 113(3):450-478.
[19] Li C C. Optimal discretization of random fields[J]. Journal of Engineering Mechanics, 1993, 119(6):1136-1154.
[20] 廖世俊. 广义泰勒原理:"同伦分析方法"之有效性的一个数理逻辑证明[J]. 应用数学和力学, 2003, 24(1):47-54. Liao Shijun. On a generalized Taylor theorem:A rational proof of the validity of the so called homotopy analysis method[J]. Applied Mathematics and Mechanics, 2003, 24(1):47-54. (in Chinese)
[21] 黄斌, 索建臣, 毛文筠. 随机杆系结构几何非线性分析的递推求解方法[J]. 力学学报, 2007, 39(6):835-842. Huang Bin, Suo Jianchen, Mao Wenjun. Geometrical nonlinear analysis of truss structures with random parameters utilizing recursive stochastic finite element method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(6):835-842. (in Chinese)
[1] 李萍, 金福松, 简方, 夏飞, 薛江红, 熊颖. 含脱层单向铺设层合梁非线性后屈曲分析[J]. 工程力学, 2019, 36(11): 230-240.
[2] 杨廷毅, 白雪. 摄动法研究硬盘磁头滑块动态飞行特性[J]. 工程力学, 2018, 35(11): 223-231.
[3] 闫维明, 石鲁宁, 何浩祥, 陈彦江. 带任意附加质量的变截面弹性支承梁动力特性的解析解[J]. 工程力学, 2016, 33(1): 47-57.
[4] 屈展, 王小增, 窦益华, 马文海. 非均匀载荷作用下偏心磨损套管稳定性准则[J]. 工程力学, 2015, 32(7): 249-256.
[5] 文颖, 李特, 曾庆元. 柔性梁几何非线性/后屈曲分析的改进势能列式方法研究[J]. 工程力学, 2015, 32(11): 18-26.
[6] 李秀梅,吴锋,张克实. 结构动力微分方程的一种高精度摄动解[J]. 工程力学, 2013, 30(5): 8-12.
[7] 黄登峰,陈力. 漂浮基柔性空间机械臂关节运动的分块神经网络控制及柔性振动模糊控制[J]. 工程力学, 2012, 29(5): 230-236,250.
[8] 安子军;张鹏;杨作梅. 摆线钢球行星传动系统参数振动特性研究[J]. 工程力学, 2012, 29(3): 244-251.
[9] 戴杰涛;张清东;秦 剑. 薄宽冷轧带钢局部板形屈曲行为解析研究[J]. 工程力学, 2011, 28(10): 236-242.
[10] 洪昭斌;陈 力. 柔性空间机械臂基于奇异摄动法的鲁棒跟踪控制和柔性振动主动控制[J]. 工程力学, 2010, 27(8): 191-198.
[11] 潘旦光;楼梦麟. 变截面Timoshenko简支梁动力特性的半解析解[J]. 工程力学, 2009, 26(8): 6-009,.
[12] 潘旦光;楼梦麟. 变参数土层一维固结的半解析解[J]. 工程力学, 2009, 26(1): 58-063,.
[13] 潘旦光;楼梦麟. 层状土层随机地震反应分析的近似解法[J]. 工程力学, 2008, 25(3): 0-095.
[14] 李正良;汪之松;李正英;熊 辉. 耗能减震结构的复模态矩阵摄动法[J]. 工程力学, 2007, 24(9): 0-018.
[15] 占玉林;向天宇;赵人达. 几何非线性结构的徐变效应分析[J]. 工程力学, 2006, 23(7): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[4] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[5] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[6] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[7] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[8] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[9] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
[10] 李元齐;田村幸雄;沈祖炎. 单层网壳结构等效静风荷载分布估计[J]. 工程力学, 2006, 23(1): 57 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日