工程力学 ›› 2019, Vol. 36 ›› Issue (6): 248-256.doi: 10.6052/j.issn.1000-4750.2018.11.0616

• 土木工程学科 • 上一篇    

多向动力耦合激励下隔震结构连续倒塌性能分析

杜永峰1,2, 时晨1,3   

  1. 1. 兰州理工大学防震减灾研究所, 甘肃, 兰州 730050;
    2. 兰州理工大学西部土木工程防灾减灾教育部工程研究中心, 甘肃, 兰州 730050;
    3. 甘肃农业大学水利水电工程学院, 甘肃, 兰州 730070
  • 收稿日期:2018-11-17 修回日期:2019-03-21 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 时晨(1987-),女,甘肃兰州人,讲师,博士生,主要从事结构减震控制研究(E-mail:shichen@gsau.edu.cn). E-mail:shichen@gsau.edu.cn
  • 作者简介:杜永峰(1962-),男,甘肃正宁人,教授,博士,博导,主要从事结构减震控制研究(E-mail:tthhblue@163.com).
  • 基金资助:
    国家自然科学基金项目(51778276,51578274)

PROGRESSIVE COLLAPSE PERFORMANCE OF ISOLATED STRUCTURES SUBJECTED TO MULTI-DIRECTION COUPLED DYNAMIC EXCITATION

DU Yong-feng1,2, SHI Chen1,3   

  1. 1. Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou, Gansu 730050, China;
    2. West Center of Disaster Mitigation in Civil Engineering of the Ministry of Education, Lanzhou University of Technology, Lanzhou, Gansu 730050, China;
    3. College of Water Conservancy and Hydropower Engineering, Gansu Agriculture university, Lanzhou, Gansu 730070, China
  • Received:2018-11-17 Revised:2019-03-21 Online:2019-06-25 Published:2019-05-31

摘要: 为分析隔震结构在多向动力耦合激励下的连续倒塌动力响应及抗倒塌能力,建立了隔震结构在多向动力耦合激励下的运动方程,对比分析了隔震结构仅考虑竖向不平衡荷载作用与考虑多向动力耦合激励下的倒塌动力响应,基于二次四阶矩可靠度理论建立随机鲁棒性指标,并利用该指标对隔震结构抗倒塌能力进行评判。研究结果表明:隔震结构在多向动力耦合激励下,其倒塌动力响应更大;支座瞬时失效后,结构内力重新分布达到新的平衡所需时间更长;结构抗连续倒塌能力更弱。

关键词: 多向动力耦合, 连续倒塌, 隔震结构, 动力响应, 鲁棒性

Abstract: In order to analyze the progressive collapse dynamic response and collapse resistance of an isolated structure subjected to multi-directional coupled dynamic excitations, the motion equation of an isolated structure under this occasion is established. The nonlinear dynamic responses of the isolated structure considering only vertical imbalance and multi-directional dynamic coupling excitations are analyzed, and a random robustness index based on reliability theory were derived to evaluate the progressive collapse ability of the isolated structure. The results show that the dynamic response of the isolated structure is greater under a multi-directional dynamic coupling excitation. After bearing fails, the time required for the internal force redistribution of the structure to reach a new equilibrium is longer, and the collapse resistance of the structure is lower.

Key words: multi-direction coupled dynamic excitation, progressive collapse, isolated structure, dynamic response, robustness

中图分类号: 

  • TU352.1+2
[1] Graubner C A, Schmidt H, Heimann M. Eurocode 0-basis of structural design[J]. Bauingenieur, 2011, 86(7):307-314.
[2] GSA2003, Progressive collapse analysis and design guidelines for guidelines for new federal office buildings and major modernization projects[S]. Washington D.C.:General Service Administration, 2003:16-20.
[3] UFC 4-023-03, Design of buildings to resist progressive collapse[S]. Washington D.C.:Unified Facilities Criteria, 2005:7-11.
[4] CECS 392-2014, 建筑结构抗倒塌设计规范[S]. 北京:中国计划出版社, 2015:4-16. CECS 392-2014, Code for anti-collapse design of building structures[S]. Beijing:China Planning Press, 2015:4-16. (in Chinese)
[5] Marjanishvili S M. Progressive analysis procedure for progressive collapse[J]. Journal of Performance of Constructed Facilities, 2004, 18(2):79-85.
[6] Tsai M H. An analytical methodology for the dynamic amplification factor in progressive collapse evaluation of building structures[J]. Mechanics Research Communications, 2010, 37(1):61-66.
[7] 胡晓斌, 钱稼茹. 单层平面钢框架连续倒塌动力效应分析[J]. 工程力学, 2008(6):38-43. Hu Xiaobin, Qian Jiaru. Dynamic effect analysis during progressive collapse of a single-story steel plane frame[J]. Engineering Mechanics, 2008(6):38-43. (in Chinese)
[8] 谢甫哲, 舒赣平. 钢框架连续倒塌的模拟方法研究[J]. 工程力学, 2011, 28(10):34-40. Xie Fu-zhe, Shu Ganping. Research on the model method of progressive collapse analysis of steel frame structures[J]. Engineering Mechanics, 2011, 28(10):34-40. (in Chinese)
[9] 周云, 陈太平, 胡翔, 等. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1):216-226, 237. Zhou Yun, Chen Tai-ping, et al, Yi Weijian. Progressive collapse resistance of RC frame structures Considering surrounding structural constraints[J]. Engineering Mechanics, 2019, 36(1):216-226, 237. (in Chinese)
[10] Lu X Z, Lin K Q, Li Y, et al. Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario[J]. Engineering Structures, 2017, 149(1):91-103.
[11] Li Y, Lu X Z, Guan H, Ye L P. An energy-based assessment on dynamic amplification factor for linear static analysis in progressive collapse design of ductile RC frame structures[J]. Advances in Structural Engineering, 2014, 17(8):1217-1225.
[12] Yu J, Luo L, Ge C. Numerical investigation on structural behavior of RC beam-slab assemblies under an exterior column removal scenario[J]. High Tech Concrete:Where Technology and Engineering Meet, 2018, 1(1):1252-1262.
[13] 徐颖, 韩庆华, 练继建. 单层球面网壳抗连续倒塌性能研究[J]. 工程力学, 2016,33(11):105-112. Xu Ying, Han Qinghua, Lian Jijian. Progressive collapse performance of single-layer latticed shells[J]. Engineering Mechanics, 2016, 33(11):105-112. (in Chinese)
[14] 潘毅, 陈侠辉, 姚蕴艺, 邓开来. 基于抽柱法的无粘结预应力装配式框架结构连续倒塌分析[J]. 工程力学, 2017, 34(12):162-170. Pan Yi, Chen Xiahui, Yao Yunyi. Progressive collapse analysis of unbonded post-tensioned precast rc frame structures using column removal method[J]. Engineering Mechanics, 2017, 34(12):162-170. (in Chinese)
[15] 包超. 竖向不规则基础隔震结构连续倒塌机制及抗倒塌性能研究[D]. 兰州:兰州理工大学, 2015:123-135. Bao Chao. Research on progressive collapse mechanism and resistance performance of vertically irregular base-isolated structure[D]. Lanzhou:Lanzhou University of Technology, 2015:123-135. (in Chinese)
[16] 黄小宁. 框-剪隔震结构抗扭设计及双随机地震倒塌可靠度研究[D]. 兰州:兰州理工大学, 2017:87-107. Huang Xiaoning. Torsional-resistance design and study on seismic collapse reliability based on double random of frame-shear-wall isolated structure[D]. Lanzhou:Lanzhou University of technology, 2017:87-107. (in Chinese)
[17] 杜永峰, 段好才, 徐天妮. 基础隔震结构竖向连续倒塌机制及影响因素研究[J]. 振动与冲击, 2018, 37(5):257-264. Du Yongfeng, Duan Haocai, Xu Tianni. Vertical progressive collapse mechanism and influencing factors of base-isolated structures[J]. Journal of vibration and shock, 2018, 37(5):257-264. (in Chinese)
[18] 杜东升, 王曙光, 刘伟庆, 等. 隔震结构损伤性能与可靠度研究[J]. 振动与冲击, 2016, 35(1):222-227. Du Dongsheng, Wang Shuguang, Liu Weiqing. Reliability based damage performance of base isolated structure[J]. Journal of Vibration and Shock, 2016, 35(1):222-227. (in Chinese)
[19] 克拉夫R, 彭津J. 结构动力学[M]. 第2版. 王光远, 译. 北京:高等教育出版社, 2006:192-194. Clough R, Penzien J. Structural dynamics[M]. Translated by Wang Guangyuan. Beijing:Higher Education Press, 2006:192-194. (in Chinese)
[20] 宋鹏彦, 吕大刚, 崔双双. 地震作用下钢筋混凝土框架结构连续倒塌极限状态可靠度分析[J]. 建筑结构学报, 2013, 34(增刊2):15-22. Lu Dagang, Song Pengyan, Cui Shuangshuang. Reliability analysis of progressive collapse limit state of reinforced concrete frame structure under earthquakes[J]. Journal of Building Structures. 2013, 34(Suppl 2):15-22. (in Chinese)
[21] 李云贵, 赵国藩. 结构可靠度的四阶矩分析法[J]. 大连理工大学学报, 1992(04):455-459. Li Yungui, Zhao Guofan. Reliability analysis of structures based on maximum entropy theory[J]. Journal of Dalian University of Technology, 1992(4):455-459. (in Chinese)
[22] Frangopol D M, Curley J P. Effects of damage and redundancy on structural reliability[J]. Journal of Structural Engineering, ASCE, 1987, 113(7):1533-1549.
[23] GB50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010:8-16. GB50011-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010:8-16. (in Chinese)
[24] 樊剑, 龙晓鸿, 赵军. 计算近场地震作用下隔震结构支座破坏易损性曲线的概率凸集混合模型[J]. 计算力学学报, 2014(2):199-204. Fan Jian, Long Xiaohong, Zhao Jun. A hybrid probabilistic and convex model for calculating the vulnerability curve of the failure of isolation bearing under near-fault earthquake ground motion[J]. Chinese Journal of Computational Mechanics, 2014(2):199-204. (in Chinese)
[1] 周颖, 吴浩, 顾安琪. 地震工程:从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1-12.
[2] 钱凯, 李治, 翁运昊, 邓小芳. 钢筋混凝土梁-板子结构抗连续性倒塌性能研究[J]. 工程力学, 2019, 36(6): 239-247.
[3] 肖宇哲, 李易, 陆新征, 任沛琪, 何浩祥. 混凝土梁柱子结构连续倒塌动力效应的试验研究[J]. 工程力学, 2019, 36(5): 44-52.
[4] 朱志辉, 张磊, 龚威, 罗思慧, 姚京川, 余志武. 基于模态叠加法和直接刚度法的列车-轨道-桥梁耦合系统高效动力分析混合算法[J]. 工程力学, 2019, 36(4): 196-205.
[5] 郑文智, 王浩, 沈惠军. 强震下隔震连续梁桥地震响应的温度效应研究[J]. 工程力学, 2019, 36(4): 188-195,205.
[6] 杜轲, 滕楠, 孙景江, 燕登, 骆欢. 基于共旋坐标和力插值纤维单元的RC框架结构连续倒塌构造方法[J]. 工程力学, 2019, 36(3): 95-104.
[7] 杨参天, 解琳琳, 李爱群, 曾德民, 刘立德. 适用于高层隔震结构的地震动强度指标研究[J]. 工程力学, 2018, 35(8): 21-29.
[8] 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138-143,171.
[9] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18-23.
[10] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117-126.
[11] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
[12] 李万润, 王辉, 孙玉萍, 杜永峰, 王雪平, 吴忠铁. 考虑隔震支座特性的隔震结构多尺度模拟与试验验证[J]. 工程力学, 2018, 35(6): 115-122,131.
[13] 李焱, 唐友刚, 朱强, 曲晓奇, 刘利琴. 考虑系缆拉伸-弯曲-扭转变形的浮式风力机动力响应研究[J]. 工程力学, 2018, 35(12): 229-239.
[14] 党育, 张辙洵, 李涌涛, 谢鹏飞. 基于概率统计方法的隔震结构可靠度[J]. 工程力学, 2018, 35(11): 146-154.
[15] 黄林杰, 周臻. 带填充墙自复位预应力混凝土框架结构的抗震性能分析[J]. 工程力学, 2018, 35(10): 162-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日