工程力学 ›› 2019, Vol. 36 ›› Issue (11): 212-221.doi: 10.6052/j.issn.1000-4750.2018.11.0612

• 机械工程学科 • 上一篇    下一篇

绳系并联支撑机构的绳迟滞效应及影响实验研究

冀洋锋1,2, 林麒1, 彭苗娇1, 柳汀1, 吴惠松1   

  1. 1. 厦门大学航空航天学院, 厦门 361005;
    2. 集美大学诚毅学院, 厦门 361021
  • 收稿日期:2018-11-07 修回日期:2019-06-27 出版日期:2019-11-13 发布日期:2019-08-16
  • 通讯作者: 林麒(1954-),女,广东人,教授,博士,博导,主要从事空气动力学试验研究(E-mail:qilin@xmu.edu.cn). E-mail:qilin@xmu.edu.cn
  • 作者简介:冀洋锋(1981-),男,陕西人,博士,主要从事绳系并联机器人及风洞试验技术研究(E-mail:mich0204@126.com);彭苗娇(1987-),女,福建人,博士生,主要从事绳系并联机器人的振动特性研究(E-mail:pmj1819@163.com);柳汀(1984-),男,吉林人,博士生,主要从事新型风洞试验支撑技术研究(E-mail:283587926@qq.com);吴惠松(1985-),男,福建人,博士生,主要从事风洞虚拟飞行研究(E-mail:504056822@qq.com).
  • 基金资助:
    国家自然科学基金项目(11472234)

EXPERIMENTAL RESEARCH OF HYSTERESIS EFFECT OF WIRE AND ITS INFLUENCE ON WIRE-DRIVEN PARALLEL SUSPENSION MECHANISM

JI Yang-feng1,2, LIN Qi1, PENG Miao-jiao1, LIU Ting1, WU Hui-song1   

  1. 1. School of Aerospace Engineering, Xiamen University, Xiamen 361005, China;
    2. Chengyi University College, Jimei University, Xiamen 361021, China
  • Received:2018-11-07 Revised:2019-06-27 Online:2019-11-13 Published:2019-08-16

摘要: 绳系并联机构因具有结构简单、工作空间大、惯性小等优势,得到了广泛的应用。该文针对支撑绳索中普遍存在的迟滞效应进行了实验研究。首先,分析了某绳系并联机器人(Wire-driven Parallel Robot,WDPR)样机中的绳迟滞曲线的数学模型,并利用实验数据识别出了模型中的相关参数;其次,通过不同条件下的绳索伸-缩实验,探讨了绳拉力迟滞效应的影响因素;接着,分析了迟滞效应对飞行器模型位姿和气动载荷参数解算的影响情况。最后,以某风洞试验模型支撑绳系并联机器人样机中支撑飞机模型的牵引绳的迟滞现象为例,对绳迟滞效应的影响情况进行了分析。研究结果表明:绳迟滞效应对模型位姿和利用绳拉力解算风洞试验的模型气动载荷都有一定的影响;绳索的材质与迟滞现象关系密切;预紧力对迟滞效应的影响程度具有决定性的作用,当绳预紧力增大到一定程度时,迟滞效应的影响是可以忽略的。

关键词: 绳系并联机器人, 绳迟滞效应, 迟滞效应实验, 绳索伸-缩实验, 迟滞效应影响

Abstract: Due to the advantages of structural simplicity, large workspace and low inertia, wire-driven parallel suspension mechanism is widely used. An experimental study is carried out on the hysteresis effect of a suspension wire. Firstly, the mathematical model of hysteresis curve in a Wire-driven Parallel Robot (WDPR) is analyzed and the corresponding parameters of the model are identified through experimental data. Secondly, the influencing factors of hysteresis phenomenon are discussed through hysteresis experiments under different conditions. Then the influence of hysteresis effect on pose and aerodynamic parameter calculation of the model is analyzed. Finally, the magnitude of the influence is analyzed based on the parameters of a WDPR prototype. The results exhibit the influence of hysteresis effect on both the pose and aerodynamic parameter calculation through wire tensions, and the material of wire is also one of the factors that cannot be ignored in relation to the hysteresis. Furthermore, the influence of hysteresis effect, dominantly determined by the level of preload, can be ignored when the preload increases to a certain extent.

Key words: wire-driven parallel robot, hysteresis effect of wire, hysteresis test, stretching and contracting tests of wire, analysis of hysteresis effect influence

中图分类号: 

  • V260.5
[1] 余本崇. 复杂太空环境下柔性绳系卫星动力学与控制[D]. 南京:南京航空航天大学, 2011. Yu Benchong. Dynamics and control of flexible tethered satellite in complex space environment[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
[2] Tang X Q. An overview of the development for cable-driven parallel manipulator[J]. Advances in Mechanical Engineering, 2014(823028):1-9.
[3] Bruckmann T, Sturm C, Lalo W. Wire robot suspension systems for wind tunnels[R]. http://www.intechopen.com/books/Wind-tunnels-and-experimental-fluid-dynamics-research/wire-robot-suspension-systems-for-wind-tunnels, 2010.
[4] Jean-Baptiste I, Alexandre D, Pierre-Elie H, et al. On the improvements of a cable-driven parallel robot for achieving additive manufacturing for construction[J]. Mechanisms and Machine Science, 2018, 53(1):353-363.
[5] Agrawal S K, Dubey V N, Gangloff J J, et al. Design and optimization of a cable driven upper arm exoskeleton[J]. Journal of Medical Devices-Transactions of the ASME, 2009, 3(031004):1-8,.
[6] Surdilovic D, Zhang J, Bernhardt R. String-man:wire-robot technology for safe, flexible and human-friendly gait rehabilitation[C]. Proceedings of 10th IEEE International Conference on Rehabilitation Robotics. Noordwijk, Netherlands, 2007:446-453.
[7] Badi Abdelhak. Inverse kinematics for a novel rehabilitation robot for lower limbs[J]. Mechanisms and Machine Science, 2018(53):376-389.
[8] 李辉, 朱文白, 潘高峰. 基于索力优化的FAST柔索牵引并联机构的静力学分析[J]. 工程力学, 2011, 28(4):185-193. Li Hui, Zhu Wenbai, Pan Gaofeng. Equilibrium analysis of fast rope-drive parallel manipulator based on rope force optimization[J]. Engineering Mechanics, 2011, 28(4):185-193. (in Chinese)
[9] 赵保庆, 王启明, 李志恒, 等. FAST圈梁支承结构性能理论与实验研究[J]. 工程力学, 2018, 35(增刊1):200-204. Zhao Baoqing, Wang Qiming, Li Zhiheng, et al. Performance research of fast ring beam by theoretical and experimental[J]. Engineering Mechanics, 2018, 35(Suppl1):200-204. (in Chinese)
[10] Li Hui, Sun Jinghai, Pan Gaofeng, et al. Preliminary running and performance test of the huge cable robot of FAST telescope[J]. Mechanisms and Machine Science, 2018(53):402-414.
[11] Farcy D, Llibre M, Carton P. SACSO:Wire-driven parallel set-up for dynamic tests in wind tunnel-review of principles and advantages for identification of aerodynamic models for flight mechanics[C]. 8th ONERA-DLR Aerospace Symposium, Göttingen, Germany, 2007.
[12] Xiao Y W, Lin Q, Zheng Y Q, et al. Model aerodynamic tests with a Wire-driven Parallel Suspension System in Low-speed Wind Tunnel[J]. Chinese Journal of Aeronautics, 2010, 23(4):393-400.
[13] Lambert T, Vukasinovic B, Glezer A. A six degrees of freedom dynamic wire-driven traverse[J]. Aerospace. 2016, 3(2):11-26.
[14] 苏宇, 仇原鹰, 韦慧玲. 考虑绳索质量和惯性力影响的绳牵引并联机器人动力学建模和张力优化求解[J]. 工程力学, 2016, 33(11):231-248. Su Yu, Qiu Yuanying, Wei Huiling. Dynamic modeling and and tension optimal distribution of cable-driven parallel robots considering cable mass and inertia force effects[J]. Engineering Mechanics, 2016, 33(11):231-248. (in Chinese)
[15] Chailleux E, Davies P. Modelling the non-linear viscoelastic and viscoplastic behavior of aramid fiber yarns[J]. Mechanics of Time-Dependent Materials, 2003, 7(3/4):291-303.
[16] 易琳, 王班, 郭吉丰. Kevlar绳索非对称迟滞模型及参数识别[J]. 浙江大学学报(工学版), 2015, 49(7):1376-1381. Yi Lin, Wang Ban, Guo Jifeng. Modeling and identification of asymmetric hysteresis for Kevlar tether[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(7):1376-1381. (in Chinese)
[17] 卢啸, 吕泉林. 自复位粘弹性腹杆的力学原理与滞回性能研究[J]. 工程力学, 2019, 36(6):138-146. Lu Xiao, Lü Quan-lin. Study on the mechanics principle and hysteretic behavior of self-centering viscoelastic diagonal members[J]. Engineering Mechanics, 2019, 36(6):138-146. (in Chinese)
[18] 靳永强, 李钢, 李宏男. 基于拟力法的钢支撑非线性滞回行为模拟[J]. 工程力学, 2017, 34(10):139-148. Jin Yongqiang, Li Gang, Li Hongnan. Numerical simulation of steel brace hysteretic behavior based on the force analogy method[J]. Engineering Mechanics, 2017, 34(10):139-148. (in Chinese)
[19] Bouc R. A mathematical model for hysteresis[J]. Acustica, 1971(21):16-25.
[20] Wen Y K. Method for random vibration of hysteretic systems[J]. Journal of Engineering Mechanics Division-ASCE, 1976, 102(2):249-263.
[21] Song J, Kiureghian A. Generalized bouc-wen model for highly asymmetric hysteresis[J]. Journal of engineering mechanics, 2006, 132(6):610-618.
[22] Do T, Tjahjowidodo T, Lau M, et al. Hysteresis modeling and position control of tendon-sheath mechanism in flexible endoscopic systems[J]. Mechatronics, 2014, 24(1):12-22.
[23] Schwanen W. Modelling and identification of the dynamic behavior of a wire rope spring[J]. Technische Universiteit Eindhoven, 2004.
[24] Miyasaka M, Haghighipanah M, Li Y, et al. Hysteresis model of longitudinally loaded cable for cable driven robots and identification of the parameters[C]. IEEE International Conference on Robotics and Automation (ICRA), 2016:4015-4057.
[25] Badrakhan F. Rational study of hysteretic systems under stationary random excitation[J]. Non-Linear Mech, 1987, 22(4):315-325.
[26] Ismail M, Ikhouane F, Rodellar J. The hysteresis bouc wen model, a survey[J]. Arch Compute Methods Engneering. 2009, 16(2):161-188.
[27] Charalampakis A E, Koumousis V K. Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm[J]. Journal of Sound and Vibration, 2008, 314(3/5):571-585.
[28] Miermeister P, Kraus W, Lan T, et al. An elastic cable model for cable-driven parallel robots including hysteresis effects[J]. Mechanisms and Machine Science, 2015(32):17-28.
[29] 冀洋锋, 林麒, 胡正红, 等. 基于绳系并联机器人支撑系统的SDM动导数试验可行性研究[J]. 航空学报, 2017:38(11):121330. Ji Yangfeng, Lin Qi, Hu Zhenghong, et al. Feasibility investigation on dynamic stability derivatives test of sdm model with wire-driven parallel robot suspension system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):121330. (in Chinese)
[30] 王晓光, 王义龙, 林麒, 等. 风洞试验绳牵引并联机器人高精度控制仿真[J]. 动力学与控制学报, 2016(5):475-480. Wang Xiaoguang, Wang Yilong, Lin Qi, et al. High Precision Control of Wire-driven Parallel Robot in Wind Tunnel Test[J]. Journal of Dynamics and Control, 2016(5):475-480. (in Chinese)
[31] 岳遂录. WDPSS-8并联机构的关键理论问题分析及其风洞试验应用研究[D]. 厦门:厦门大学, 2013:59-62. Yue Suilu. Key Theoretical Issue Analysis and Applied Research on Wind Tunnel Tests of WDPSS-8[D]. Xiamen:Xiamen University, 2013:59-62. (in Chinese)
[32] Yuan H, Courteille E, Deblaise D. Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity[J]. Mechanism and Machine Theory, 2015, 85:64-81.
[33] 林麒, 彭苗娇, 沈浪. 一种用于测量绳索阻尼参数的实验方法[P]. CN201710584399.6.2017-07-18. Lin Qi, Peng Miaojiao, Shen Lang. An experimental method for measuring cable damping parameters[P]. CN201710584399.6.2017-07-18.
[34] Wolons D, Gandhi F, Malovrh B. Experimental investigation of the pseudoelastic hysteresis damping characteristics of shape memory alloy wires[J]. Journal of Intelligent Material Systems and Structures, 1998, 27(3):116-126.
[35] Choi S H, Park K S. Integrated and nonlinear dynamic model of a polymer cable for low-speed cable-driven parallel robot[J]. Microsystem Technologies, 2017, 35(2):335-352.
[36] Wen B L, Yang G, Yeo S H, et al. A generic force-closure analysis algorithm for cable-driven parallel manipulators[J]. Mechanism and Machine Theory, 2011, 46(9):1265-1275.
[37] 王晓光, 马少宇, 彭苗娇, 等. 绳牵引并联机器人弹性变形对动平台位姿精度的影响[J]. 计算力学学报. 2016(3):306-312. Wang Xiaoguang, Ma Shaoyu, Peng Miaojiao, et al. Influence of elastic deformation on pose precision of moving platform for wire-driven parallel robot[J]. Chinese Journal of Computational Mechanic, 2016(3):306-312. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[2] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[3] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[4] 陈誉;刘飞飞. 正对称Pratt 桁架直腹杆受压大偏心N型圆钢管节点静力性能实验研究[J]. 工程力学, 2011, 28(11): 170 -177 .
[5] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[6] 王小兵;刘扬;崔海清;韩洪升. 螺旋流抑制杆管偏磨的PIV实验研究[J]. 工程力学, 2011, 28(11): 225 -230 .
[7] 郜新军;赵成刚;刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J]. 工程力学, 2011, 28(11): 237 -243 .
[8] 吕伟荣;王猛;刘锡军. 灌芯混凝土砌块砌体破坏准则研究[J]. 工程力学, 2011, 28(11): 251 -256 .
[9] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[10] 张嘎;张建民. 土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J]. 工程力学, 2006, 23(2): 72 -77 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日