工程力学 ›› 2019, Vol. 36 ›› Issue (10): 202-211.doi: 10.6052/j.issn.1000-4750.2018.11.0600

• 土木工程学科 • 上一篇    下一篇

土-钢共同作用下大跨度波纹钢板管廊结构局部屈曲分析

陈天黎1, 苏明周1,2, 王会萌1   

  1. 1. 西安建筑科技大学土木工程学院, 西安 710055;
    2. 西安建筑科技大学结构工程与抗震教育部重点实验室, 西安 710055
  • 收稿日期:2018-11-07 修回日期:2019-05-27 出版日期:2019-10-25 发布日期:2019-05-31
  • 通讯作者: 苏明周(1971-),男,河南人,教授,博士,博导,主要从事钢结构稳定与抗震、新型结构体系受力性能和设计理论研究(E-mail:sumingzhou@163.com). E-mail:sumingzhou@163.com
  • 作者简介:陈天黎(1995-),女,陕西人,硕士生,主要从事钢结构稳定与抗震研究(E-mail:ctlspring@163.com);王会萌(1990-),男,山东人,博士生,主要从事钢结构稳定与抗震研究(E-mail:wanghuimeng029@163.com).
  • 基金资助:
    国家自然科学基金项目(51978564);陕西省自然科学基础研究计划项目(2018JM5079)

LOCAL BUCKLING OF CORRUGATED STEEL PLATE IN LONG-SPAN UTILITY TUNNEL WITH THE INTERACTION OF SOIL-STEEL

CHEN Tian-li1, SU Ming-zhou1,2, WANG Hui-meng1   

  1. 1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
    2. Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education(XAUAT), Xi'an 710055, China
  • Received:2018-11-07 Revised:2019-05-27 Online:2019-10-25 Published:2019-05-31

摘要: 对于采用深波和大波波形的大跨度波纹钢板综合管廊,其截面平直段在结构整体达到极限承载力之前可能发生局部屈曲。采用Rayleigh-Ritz法对大跨度综合管廊结构中波纹钢板平直段的局部屈曲进行分析。将波纹段考虑为平直段的弹性约束,土体作用考虑为只能承受压力的弹性基底,根据环压理论,得到了钢板平直段在环向均布压力作用下屈曲半波数分别为偶数和奇数时的屈曲荷载理论解。讨论了转动弹簧约束系数对临界屈曲系数的影响,得出非加载边波纹段对平直段的约束作用可视为简支或固支的转动约束系数值;得到了土体弹簧刚度与屈曲荷载间呈线性关系;讨论了板件纵横比与临界屈曲系数间的关系,得到了临界屈曲系数趋于定值时相应的板件纵横比,给出了简化公式。通过有限元值、简化公式值与理论值的对比,证实了简化公式的适用性。最后,根据屈服准则和等稳准则,提出相应的防止大跨径波纹钢板局部屈曲的宽厚比限值的计算公式,可为实际工程提供参考。

关键词: 综合管廊, 波纹钢板, 土-钢作用, 局部屈曲, 宽厚比限值

Abstract: For the deep and big wave section of a corrugated steel plate (CSP) that is used in a long-span utility tunnel, local buckling may occur in the straight portion of a CSP before the ultimate capacity is reached. The local buckling of the straight portion of CSP is investigated using the Rayleigh-Ritz method. The corrugated portions are assumed to be the elastic rotational restraints of the straight portion, and the soil action is considered as an elastic foundation that can only bear compression. According to the ring compression theory, the local buckling load can be calculated for both the even and odd numbers of the half buckling waves. The influence of the rotational restraint coefficient on critical buckling coefficients is studied, and the supported conditions of corrugated portion are obtained, which can be regarded as simply supported or fully clamped boundary. The relationship between the stiffness of the compression spring for the soil and the buckling load is obtained to be linear. The relationship between the aspect ratio of the straight portion and the critical buckling coefficient is discussed. The corresponding aspect ratio is obtained when the critical buckling coefficient tended to be stable, and the simplified theoretical formulas are derived. With the finite element method analysis, the finite element results, simplified analysis results and theoretical results match well with each other, which validates the simplified derivation. Finally, according to the yield criterion and stability criterion, a reasonable limit value for the width-to-thickness ratio for the straight portion of the CSP are suggested to prevent local buckling of CSP utility tunnel, which can provide a reference for practical applications.

Key words: utility tunnel, corrugated steel plate, soil-steel interaction, local buckling, width-to-thickness ratio

中图分类号: 

  • TU391
[1] Flener E B. Soil-steel interaction of long-span box culverts-performance during backfilling[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(6):823-832.
[2] Kim S, Jungwhee L. Numerical evaluation of deep corrugated steel plate seam strength[J]. International Journal of Steel Structures, 2014, 14(2):315-321.
[3] 李祝龙, 曹彪, 梁养辉, 等. 管拱型钢波纹管涵洞有限元计算分析[J]. 重庆交通大学学报(自然科学版), 2016, 35(4):29-34. Li Zhulong, Cao Biao, Liang Yanghui, et al. Finite element analysis of arch-shaped steel corrugated tubular culvert[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(4):29-34. (in Chinese)
[4] 褚夫蛟, 曾水生, 方文富, 等. 高填方大直径钢波纹管涵洞力学特性[J]. 东北大学学报(自然科学版), 2016, 37(9):1338-1342. Chu Fujiao, Zeng Shuisheng, Fang Wenfu, et al. Mechanical properties of large-sized corrugated steel pipe culvert under high embankment filled[J]. Journal of Northeastern University (Natural Science), 2016, 37(9):1338-1342. (in Chinese)
[5] Wang T Y, Tan L X, Xie S Y, et al. Development and applications of common utility tunnels in China[J]. Tunnelling and Underground Space Technology, 2018, 76:92-106.
[6] Li S, Liu X F, Wang J X, et al. Experimental reduced-scale study on the resistance characteristics of the ventilation system of a utility tunnel under different pipeline layouts[J]. Tunnelling and Underground Space Technology, 2019, 90:131-143.
[7] Yang C, Peng F L, Xu K, et al. Feasibility study on the geothermal utility tunnel system[J]. Sustainable Cities and Society, 2019, 46:101445.
[8] Yeau K Y, Sezen H, Fox P J. Load performance of in situ corrugated steel highway culverts[J]. Journal of Performance of Constructed Facilities, 2009, 23(1):32-39.
[9] Sutubadi M H, Khatibi B R. Effect of soil properties on stability of soil-steel culverts[J]. Turkish Journal of Engineering and Environmental Sciences, 2013, 37(1):79-90.
[10] 孙海波, 刘鹏飞, 刘保东, 等. 不同断面线形波纹钢管涵结构力学性能研究[J]. 公路交通科技, 2015, 32(10):75-81. Sun Haibo, Liu Pengfei, Liu Baodong, et al. Study on structural mechanical performance of corrugated steel pipe culverts with different cross-section shapes[J]. Journal of Highway and Transportation Research and Development, 2015, 32(10):75-81. (in Chinese)
[11] Tang G, Yin L F, Guo X M, et al. Finite element analysis and experimental research on mechanical performance of bolt connections of corrugated steel plates[J]. International Journal of Steel Structures, 2015, 15(1):193-204.
[12] Beben D. The role of backfill quality on corrugated steel plate culvert behaviour[J]. Baltic Journal of Road & Bridge Engineering, 2017, 12(1):1-11.
[13] Rauch A F, Sargand S M, Hazen G A. Behavior of deeply corrugated steel plate in culvert[J]. Journal of Structural Engineering, 1994, 120(5):1651-1655.
[14] White H L, Layer J P. The corrugated metal conduit as a compression ring[C]//Highway Research Board, Proceedings of the 29th Annual Meeting. Washington, D. C., USA, 1960:11-15.
[15] 莫时旭, 钟新谷, 赵人达. 刚性基底上弹性矩形板的屈曲行为分析[J]. 工程力学, 2005, 22(2):174-178. Mo Shixu, Zhong Xingu, Zhao Renda. Buckling behavior of elastically constrained rectangular plate on rigid base[J]. Engineering Mechanics, 2005, 22(2):174-178. (in Chinese)
[16] 毛佳, 江振宇, 陈广南, 等. 弹性支承上边界转动约束矩形板屈曲分析[J]. 工程力学, 2010, 27(12):59-63. Mao Jia, Jiang Zhenyu, Chen Guangnan, et al. Elastic buckling analysis of rectangle plate with rotation restraint on elastic support[J]. Engineering Mechanics, 2010, 27(12):59-63. (in Chinese)
[17] Bradford M A, Smith S T, Oehlers D J. Semi-compact steel plates with unilateral restraint subjected to bending, compression and shear[J]. Journal of Constructional Steel Research, 2000, 56(1):47-67.
[18] Cai J, Long Y L. Local buckling of steel plates in rectangular CFT columns with binding bars[J]. Journal of Constructional Steel Research, 2009, 65(4):965-972.
[19] 马建军, 聂梦强, 高笑娟, 等. 考虑土体质量的Winkler地基梁非线性自由振动分析[J]. 工程力学, 2018, 35(增刊1):150-155. Ma Jianjun, Nie Mengqiang, Gao Xiaojuan, et al. Nonlinear free vibration of a beam on Winkler foundation with a consideration of soil mass effect[J]. Engineering Mechanics, 2018, 35(Suppl 1):150-155. (in Chinese)
[20] Korusiewicz L, Kunecki B. Behaviour of the steel box-type culvert during backfilling[J]. Archives of Civil & Mechanical Engineering, 2011, 11(3):637-650.
[21] Abuhajar O, Newson T, El Naggar H. Scaled physical and numerical modelling of static soil pressures on box culverts[J]. Canadian Geotechnical Journal, 2015, 52(11):1637-1648.
[22] Du G L, Pettersson L, Karoumi R. Soil-steel composite bridge:An alternative design solution for short spans considering LCA[J]. Journal of Cleaner Production, 2018, 189:647-661.
[23] Brachman R W I, Elshimi T M, Mak A C, et al. Testing and analysis of a deep-corrugated large-span box culvert prior to burial[J]. Journal of Bridge Engineering, 2012, 17(1):81-88.
[24] Sargand S M, Khoury I, Hussein H H, et al. Load capacity of corrugated steel pipe with extreme corrosion under shallow cover[J]. Journal of Performance of Constructed Facilities, 2018, 32(4):04018050.
[25] Sanaeiha A, Mohammad R, Mohammad S M. Field test of a large-span soil-steel bridge stiffened by concrete rings during backfilling[J]. Journal of Bridge Engineering, 2017, 22(10):06017002.
[26] 路德春, 罗磊, 王欣, 等. 土与结构接触面土体软/硬化本构模型及数值实现[J]. 工程力学, 2017, 34(7):41-50. Lu Dechun, Luo Lei, Wang Xin, et al. Softening/Hardening constitutive model for soil-structure interface and numerical implementation[J]. Engineering Mechanics, 2017, 34(7):41-50. (in Chinese)
[27] GB 50307-2012, 城市轨道交通岩土工程勘探规范[S]. 北京:中国计划出版社, 2012. GB 50307-2012, Code for geotechnical investigations of urban rail transit[S]. Beijing:China Planning Press, 2012. (in Chinese)
[28] GB/T 34567-2017, 冷弯波纹钢管[S]. 北京:中国标准出版社, 2017. GB/T 34567-2017, Cold-formed corrugated steel pipes[S]. Beijing:Standards Press of China, 2017. (in Chinese)
[29] Beben D. Field performance of corrugated steel plate road culvert under normal live-load conditions[J]. Journal of Performance of Constructed Facilities, 2013, 27(6):807-817.
[30] 陈绍蕃. 柱段试验与钢压杆的局部-整体相关屈曲[J]. 建筑钢结构进展, 2013, 15(2):1-5. Chen Shaofan. Stub-column test and interaction local-global buckling of steel compression members[J]. Progress in Steel Building Structures, 2013, 15(2):1-5. (in Chinese)
[31] 陈绍蕃. 轴心压杆板件宽厚比限值的统一分析[J]. 建筑钢结构进展, 2009, 11(5):1-7. Chen Shaofan. Unified analysis of limiting width-thickness ratio of plate elements in axially compressed members[J]. Progress in Steel Building Structures, 2009, 11(5):1-7. (in Chinese)
[32] 张爱林, 张庆芳, 柴抒韬, 等. 工形截面轴心受压构件板件屈曲系数研究[J]. 工程力学, 2017, 34(5):60-67. Zhang Ailin, Zhang Qingfang, Chai Shutao, et al. Study on plate buckling coefficients of axial compression members with I-shaped sections[J]. Engineering Mechanics, 2017, 34(5):60-67. (in Chinese)
[33] CAN/CSA S606-2010, Canadian Highway Bridge Design Code[S]. Mississauga, Ontario:Canadian Standards Association, 2010.
[1] 王宇航, 吴强, 熊光亮. 不同参数下低屈服点钢剪切板耗能元件受力性能试验研究[J]. 工程力学, 2017, 34(7): 21-22.
[2] 王培军, 王旭东, 马宁. 圆角多边孔蜂窝梁孔间腹板屈曲承载力研究[J]. 工程力学, 2015, 32(4): 145-152.
[3] 周乐, 王晓初, 王军伟, 白云皓. 负载条件下CFRP加固轴心受压钢管短柱受力性能研究[J]. 工程力学, 2015, 32(11): 201-209.
[4] 朱奇,李国强. 波纹腹板H型钢梁受压翼缘局部稳定研究[J]. 工程力学, 2014, 31(9): 51-56.
[5] 姚行友,李元齐. 冷弯薄壁型钢卷边槽形截面构件畸变屈曲承载力计算方法研究[J]. 工程力学, 2014, 31(9): 174-181.
[6] 班慧勇, 施刚, 石永久. Q420高强度等边角钢轴压构件整体稳定性能设计方法研究[J]. 工程力学, 2014, 31(3): 63-71.
[7] 聂建国,丁 然. 正弯矩区组合梁腹板局部稳定性研究[J]. 工程力学, 2013, 30(2): 58-64.
[8] 王春刚 张壮南 贾连光 马 平. 板件中间V形加劲复杂卷边槽钢轴压构件的稳定性能研究[J]. 工程力学, 2012, 29(增刊Ⅱ): 113-116,121.
[9] 石永久, 王萌, 王元清. 钢框架不同构造形式焊接节点抗震性能分析[J]. 工程力学, 2012, 29(7): 75-83.
[10] 石永久,王 萌,王元清. 不同焊接节点构造形式钢框架整体抗震性能分析[J]. 工程力学, 2012, 29(11): 71-079.
[11] 戴杰涛;张清东;秦 剑. 薄宽冷轧带钢局部板形屈曲行为解析研究[J]. 工程力学, 2011, 28(10): 236-242.
[12] 吴丽丽;聂建国. 四边简支钢-混凝土组合板的弹性局部剪切屈曲分析[J]. 工程力学, 2010, 27(1): 52-057.
[13] 剧锦三;杨蔚彪;蒋秀根. 受刚体碰撞方管柱考虑局部屈曲时的弹塑性冲击荷载[J]. 工程力学, 2008, 25(7): 0-195.
[14] 杨 娜;乔 磊;焦 通;陈爱国. 楔形H型钢短柱在循环荷载作用下的试验研究与数值模拟[J]. 工程力学, 2008, 25(6): 0-152,.
[15] 蔡 健;何振强;金雪峰. 带约束拉杆方形钢管混凝土轴压柱局部屈曲性能[J]. 工程力学, 2007, 24(5): 0-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[4] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[5] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[6] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[7] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[8] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[9] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[10] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日