工程力学 ›› 2020, Vol. 37 ›› Issue (1): 53-62.doi: 10.6052/j.issn.1000-4750.2018.11.0596

• 土木工程学科 • 上一篇    下一篇

钢筋混凝土悬臂梁剪切破坏及尺寸效应律研究

金浏, 王涛, 杜修力, 夏海   

  1. 北京工业大学城市减灾与防灾防护教育部重点实验室, 北京 100124
  • 收稿日期:2018-11-07 修回日期:2019-03-14 出版日期:2020-01-29 发布日期:2019-03-25
  • 通讯作者: 杜修力(1962-),男,四川人,教授,博士,博导,主要从事结构工程及地震工程领域研究(E-mail:duxiuli@bjut.edu.cn). E-mail:duxiuli@bjut.edu.cn
  • 作者简介:金浏(1985-),男,江苏人,教授,博士,博导,主要从事混凝土与混凝土结构方面研究(E-mail:jinliu@bjut.edu.cn);王涛(1994-),男,河北人(蒙族),硕士生,主要从事混凝土构件尺寸效应研究(E-mail:wangtao19940902@163.com);夏海(1994-),男,河南人,硕士生,主要从事混凝土构件尺寸效应研究(E-mail:strongerhai@163.com).
  • 基金资助:
    国家重点研发计划项目(2018YFC1504302,2016YFC0701100);国家自然科学基金项目(51822801,51421005)

SIZE EFFECT THEORY ON SHEAR FAILURE OF RC CANTILEVER BEAMS

JIN Liu, WANG Tao, DU Xiu-li, XIA Hai   

  1. The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2018-11-07 Revised:2019-03-14 Online:2020-01-29 Published:2019-03-25

摘要: 相比于混凝土材料,钢筋混凝土构件的破坏模式与机制更为复杂,采用混凝土材料层次的尺寸效应理论难以描述钢筋混凝土构件破坏的尺寸效应行为。为研究钢筋混凝土悬臂梁剪切破坏的尺寸效应行为,从细观角度出发,建立了钢筋混凝土悬臂梁三维细观尺度数值分析模型。结合现有试验数据,验证了细观模拟方法的可行性与合理性,进而拓展模拟与分析了剪跨比及配箍率对钢筋混凝土悬臂梁剪切破坏尺寸效应行为的影响规律,发现:剪跨比对悬臂梁抗剪承载力有较大影响,对尺寸效应的影响很小;配箍率的增大提高了悬臂梁抗剪承载力,同时削弱了梁的抗剪强度尺寸效应。根据剪跨比及配箍率对悬臂梁抗剪强度的影响机制与规律,基于Bažant材料层次尺寸效应律,建立了钢筋混凝土悬臂梁抗剪强度尺寸效应理论公式。对比模拟结果及试验数据,验证了所提尺寸效应理论公式的准确性与合理性。

关键词: 钢筋混凝土悬臂梁, 剪跨比, 配箍率, 抗剪强度, 尺寸效应律

Abstract: Compared with those of concrete materials, the failure modes and mechanisms of reinforced concrete (RC) members are much more complicated. It is therefore hard to describe the size effect behavior of RC members by using the size effect theory of concrete materials. From the mesoscopic view, a three dimensional meso-scale numerical analysis model of RC cantilever beams was established to study the size effect of shear failure of RC cantilever beams. The feasibility of the simulation method was verified by the existing experimental data, and the influences of shear span ratio and stirrup ratio on the size effect of shear failure of RC cantilever beams was investigated. The simulation results indicate that:the shear span ratio has a great influence on the shear capacity of RC cantilever beams, but has little effect on the size effect; the increase of stirrup ratio increases the shear capacity of RC cantilever beams, and weakens the size effect of the shear strength of RC cantilever beams. Furthermore, combined with the influence mechanism of shear span ratio and stirrup ratio on shear strength of RC cantilever beams, a theoretical formula for the size effect of shear strength of RC cantilever beams was established based on the theory of the Size Effect Law (SEL) proposed by Bažant. The accuracy and rationality of the theoretical formula are verified by comparing the simulation results and the test data.

Key words: RC cantilever beam, shear span ratio, stirrups ratio, shear strength, size effect theory

中图分类号: 

  • TU375.1
[1] Kani G N J. How safe are our large reinforced concrete beams[J]. ACI Journal, 1967, 64(31):128-141.
[2] Kim J K, Park Y D. Shear strength of reinforced high-strength concrete beams without web reinforcement[J]. Magazine of Concrete Research, 1994, 46(166):7-16.
[3] Chana P S. Some aspects of modeling the behavior of reinforced concrete under shear loading[R]. England:Cement and Concrete Association Technical Report, 1981.
[4] Yu L, Che Y, Song Y P. Shear behavior of large reinforced concrete beams without web reinforcement[J]. Advances in Structural Engineering, 2013, 16(4):653-665.
[5] Collins M P, Kuchma D A. How safe are our large, lightly reinforced concrete beams, slabs, and footings?[J]. ACI Structural Journal, 1999, 96(4):482-490.
[6] Lubell A, Sherwood T, Bentz E C, et al. Safe shear design of large, wide beams[J]. Concrete International, 2004, 26(1):67-78.
[7] Bažant Z P, Yu Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups:I. Formulation[J]. Journal of Structural Engineering, 2005, 141(12):1877-1885.
[8] Bažant Z P, Kim J K. Size effect in shear failure of longitudinally reinforced beams[J]. ACI Journal Proceedings, 1984, 81(5):456-468.
[9] Walraven J, Lehwalter N. Size effect in short beams loaded in shear[J]. ACI Structural Journal, 1994, 91(5):585-593.
[10] Yu Q, Bažant Z P. Can stirrups suppress size effect on shear strength of RC beams[J]. Journal of Structural Engineering, 2011, 137(5):607-617.
[11] Jin L, Du X L, Li D, et al. Seismic behavior of RC cantilever beams under low cyclic loading and size effect on shear strength:An experimental characterization[J]. Engineering Structures, 2016, 122:93-107.
[12] Bhal N S. Über den einfluss der balkenhöhe auf schubtrafahighkeit von einfeldrigen stalbetonbalken mit und ohne schubbewehrung[M]. Germany:Otto-GrafInstitut, 1968.
[13] Bažant Z P. Size effect in blunt fracture:concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4):518-535.
[14] Carpinteri A, Ferro G. Size effects on tensile fracture properties:A unified explanation based on disorder and fractality of concrete microstructure[J]. Materials and Structures, 1994, 27(10):563-571
[15] Weibull W. A statistical distribution function of wide applicability[J]. Journal of applied mechanics, 1951, 18(3):293-297.
[16] Rios R D, Riera J D. Size effects in the analysis of reinforced concrete structures[J]. Engineering Structures, 2004, 26(8):1115-1125.
[17] Du Xiuli, Jin Liu, Ma Guowei. A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members[J]. International Journal of Damage Mechanics, 2013, 22(6):878-904.
[18] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[19] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[20] 金浏, 苏晓, 杜修力. 基于三维细观数值方法的钢筋混凝土悬臂梁抗剪行为研究[J]. 工程力学, 2017, 34(12):59-66. Jin Liu, Su Xiao, Du Xiuli. Study on shear performances of reinforced concrete cantilever beam using 3D meso-scale simulation method[J]. Engineering Mechanics, 2017, 34(12):59-66. (in Chinese)
[21] 金浏, 杜敏, 杜修力, 等. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5):93-101. Jin Liu, Du Min, Du Xiuli, et al. Size effect on the failure of stirrup-confined reinforced concrete columns under axial compression[J]. Engineering Mechanics, 2018, 35(5):93-101. (in Chinese)
[22] 张琦, 过镇海. 砼抗剪强度和剪切变形的研究[J]. 建筑结构学报, 1992, 13(5):17-24. Zhang Qi, Guo Zhenhai. Investigation on shear strength and shear strain of concrete[J]. Journal of Building Structures, 1992, 13(5):17-24. (in Chinese)
[23] Syroka-Korol E, Tejchman J. Experimental investigations of size effect in reinforced concrete beams failing by shear[J]. Engineering Structures, 2014, 58(7):63-78.
[1] 覃茜, 徐千军. 成层混凝土的剪切强度和Ⅱ型断裂韧度[J]. 工程力学, 2019, 36(9): 188-196.
[2] 金浏, 余文轩, 杜修力, 张帅, 李冬. 低应变率下混凝土动态拉伸破坏尺寸效应细观模拟[J]. 工程力学, 2019, 36(8): 59-69,78.
[3] 李振宝, 崔燕伟, 宋坤, 马华, 唐贞云. 双向受力下钢筋混凝土框架节点抗剪承载力计算方法[J]. 工程力学, 2019, 36(1): 175-182.
[4] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53-61.
[5] 郑山锁, 刘巍, 左河山, 董立国, 李强强. 近海大气环境下考虑锈蚀的不同剪跨比RC框架梁抗震性能试验[J]. 工程力学, 2018, 35(4): 78-86.
[6] 金浏, 苏晓, 杜修力. 基于三维细观数值方法的钢筋混凝土悬臂梁抗剪行为研究[J]. 工程力学, 2017, 34(12): 59-66.
[7] 邓明科, 马福栋, 李勃志, 梁兴文. 基于修正拉-压杆模型的型钢混凝土深梁受剪承载力分析[J]. 工程力学, 2017, 34(12): 95-103.
[8] 邓明科, 卜新星, 潘姣姣, 梁兴文. 型钢高延性混凝土短柱抗震性能试验研究[J]. 工程力学, 2017, 34(1): 163-170.
[9] 叶勇, 韩林海, 陶忠. 脱空对圆钢管混凝土受剪性能的影响分析[J]. 工程力学, 2016, 33(增刊): 62-66,71.
[10] 梁兴文, 徐洁, 邢朋涛, 邓明科. 纤维增强混凝土柱抗震性能试验研究及数值模拟[J]. 工程力学, 2016, 33(8): 66-76,92.
[11] 闫维明, 侯立群, 陈适才, 张瑞云, 齐越. 双向荷载作用下空间夹心节点受力性能试验研究[J]. 工程力学, 2016, 33(5): 211-219.
[12] 邓明科, 代洁, 梁兴文, 张明玥. 高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2016, 33(10): 208-217.
[13] 白福波. 侧向预压增量法解析土压力[J]. 工程力学, 2015, 32(增刊): 20-26.
[14] 刘伯权, 刘喜, 吴涛. 基于共轭先验分布的深受弯构件受剪承载力概率模型分析[J]. 工程力学, 2015, 32(4): 169-177.
[15] 贾金青, 姚大立, 余芳. 预应力型钢超高强混凝土梁受剪承载力试验研究[J]. 工程力学, 2014, 31(8): 126-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[2] 魏巍;杜静;白绍良. 细长偏心受压钢筋混凝土杆件的强度失效及稳定失效极限承载力分析[J]. 工程力学, 2006, 23(4): 114 -119 .
[3] 刘润;徐余;闫澍旺. 减沉桩基础作用特性的有限元分析[J]. 工程力学, 2006, 23(2): 144 -148 .
[4] 谢峻;江见鲸;韩大建;王国亮. 大跨度斜拉桥损伤识别的三步法[J]. 工程力学, 2006, 23(8): 53 -56,4 .
[5] 秦绪喜;刘寒冰. 均布与线性荷载下简支T梁剪力滞系数的圣维南解[J]. 工程力学, 2009, 26(10): 135 -139 .
[6] 鲁成林;张修银;吴艳玲;张东升;. 全瓷冠触压破坏的实验研究[J]. 工程力学, 2009, 26(12): 246 -248, .
[7] 吴建营;李 杰. 混凝土各向异性损伤模型的数学和热力学表述[J]. 工程力学, 2009, 26(增刊Ⅱ): 133 -147 .
[8] 申彦利;杨庆山;田玉基. 基于概率的多点激励地震场强度参数研究[J]. 工程力学, 2010, 27(1): 202 -208 .
[9] 葛继平;王志强. 干接缝节段拼装桥墩集中塑性铰模型的地震响应分析[J]. 工程力学, 2010, 27(8): 185 -190 .
[10] 李全旺;樊健生;聂建国. 地震动方向随机性对结构动力反应的影响[J]. 工程力学, 2010, 27(12): 135 -140 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日