工程力学 ›› 2019, Vol. 36 ›› Issue (11): 203-211.doi: 10.6052/j.issn.1000-4750.2018.11.0593

• 机械工程学科 • 上一篇    下一篇

全轮对曲线通过时的瞬态滚动接触行为模拟研究

许黎明, 刘超, 赵鑫, 温泽峰   

  1. 西南交通大学牵引动力国家重点实验室, 成都 610031
  • 收稿日期:2018-11-03 修回日期:2019-03-10 出版日期:2019-11-13 发布日期:2019-03-28
  • 通讯作者: 赵鑫(1981-),男,山东人,副研究员,博士,硕导,主要从事轮轨滚动接触力学和轮轨损伤研究(E-mail:xinzhao@home.swjtu.edu.cn). E-mail:xinzhao@home.swjtu.edu.cn
  • 作者简介:许黎明(1994-),男,安徽人,硕士生,主要从事轮轨滚动接触力学和轮轨损伤研究(E-mail:master_xuliming@163.com);刘超(1991-),男,江苏人,硕士,主要从事轮轨滚动接触力学和轮轨损伤研究(E-mail:liuchao910826@163.com);温泽峰(1976-),男,广西人,研究员,博士,博导,主要从事轮轨关系和减振降噪研究(E-mail:zefengwen@126.com).
  • 基金资助:
    国家重点研发计划项目(2016YFB1200501-005);国家自然科学基金项目(51675444);四川省国际科技合作与交流研发项目(2017HH0038);牵引动力国家重点实验室自主课题项目(2017TPL_Z06)

ANALYSES OF TRANSIENT WHEEL-RAIL ROLLING CONTACT BEHAVIOR DURING CURVING

XU Li-ming, LIU Chao, ZHAO Xin, WEN Ze-feng   

  1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2018-11-03 Revised:2019-03-10 Online:2019-11-13 Published:2019-03-28

摘要: 采用显式有限元法建立了我国某地铁系统R300 m曲线段的全轮对三维轮轨瞬态滚动接触模型,在时域内数值模拟了轮对曲线通过时的瞬态滚滑行为,详细分析了自由轮对滚过无不平顺的光滑钢轨和单侧钢轨存在波磨时两侧轮轨间的接触力、接触应力、相对滑移和黏滑区分布及摩擦功等结果。相比以往直线轨道的半轮对和全轮对滚动接触模型,该模型将曲线超高、弯曲钢轨、轮对横移及侧滚等考虑在内。光滑轮轨的结果表明:以50 km/h通过曲线时(均衡速度50.42 km/h),外轨磨耗大于内轨,最大磨耗值约为内轨的3.1倍,且集中于轨距角附近;随着横移量的增大,外轨的接触力、接触应力及摩擦功会显著增大;这些与现场观测一致,初步验证了模型的可靠性。存在于单侧钢轨的短波波磨会引起两侧轨头摩擦功的波动,不仅会造成波磨侧轨面的不均匀磨耗,也会引发另一侧钢轨的轻微不均匀磨耗。该文计算工况下,波磨存在于内轨时引起的无波磨侧摩擦功最大波动幅值约为存在于外轨时相应结果的1.9倍,即内轨短波波磨能更有效触发无波磨侧萌生波磨;短波波磨无论发生在内轨还是外轨,两侧摩擦功波动幅值均在40 km/h~50 km/h间某速度下(略低于均衡速度)达到最小值,即波磨发展速率最低。

关键词: 车辆工程, 轮轨滚动接触, 显示有限元, 曲线通过, 单侧波磨, 高频轮轨作用, 不均匀磨损

Abstract: A 3-D transient wheelset-rail rolling contract model has been developed for a metro in China. The explicit finite element method was used to model the transient rolling contact behavior of a free wheelset passing over a curve of R300 m in the time domain. Focus was placed on the resulting contact forces, stresses, relative slip, stick-slip distributions and friction work applied by the wheel-rail contact. Two cases were considered including smooth rails (without geometry irregularity) and one-side short pitch corrugation. With respect to the previous models of half-wheelset or full-wheelset on tangent tracks, super-elevation, curved rails, lateral shift and roll-over of wheelset, etc. were all taken into account. Results over smooth rails at 50 km/h (the equilibrium speed is 50.42 km/h) have shown that the wear on the outer rail concentrates near the gauge angle and is approximately 3.1 times larger than that on the inner rail; the contact forces, stresses and friction work increase significantly as the lateral shift increases. These results are consistent with on-site observations and provide preliminary validation of the model. The short pitch corrugation on one rail can not only lead to uneven wear on the corrugated rail, but also slight uneven wear on the smooth side. The amplitudes of the frictional work fluctuations on non-corrugated rail resulting from corrugation on the inner is about 1.9 times that from corrugation on the outer one, suggesting that corrugation exiting on the inner rail can trigger the occurrence of corrugation on the smooth side more efficiently. In addition, whether the corrugation is on the inner or outer rail, the amplitude of the frictional work reaches its minimum on both sides at a speed between 40 km/h and 50 km/h (being slightly lower than the equilibrium speed), i.e. the growth rate of corrugation is minimum.

Key words: vehicle engineering, wheel-rail rolling contract, explicit finite element, curving, single rail corrugation, high frequency wheel-rail interaction, uneven wear

中图分类号: 

  • U211.5
[1] 王开云, 翟婉明, 刘建新, 等. 提速列车与曲线轨道的横向相互动力作用研究[J]. 中国铁道科学, 2006, 26(6):38-43. Wang Kaiyun, Zhai Wanming, Liu Jianxin, et al. Research on the lateral dynamic interaction between speed-increased train and curve track[J]. China Railway Science, 2006, 26(6):38-43. (in Chinese)
[2] 熊嘉阳, 金学松. 铁路曲线钢轨横向凹坑对初始波磨形成的影响[J]. 工程力学, 2006, 23(06):135-141. Xiong Jiayang, Jin Xuesong. Effects of lateral dent on curved rail on rail corrugation[J]. Engineering Mechanics, 2006, 23(06):135-141. (in Chinese)
[3] Telliskivi T, Olofsson U. Contact mechanics analysis of measured wheel-rail profiles using the finite element method[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2001, 215(2):65-72.
[4] Sladkowski A, Sitarz M. Analysis of wheel-rail interaction using FE software[J]. Wear, 2005, 258(7):1217-1223.
[5] 侯传伦. 重载铁路曲线段磨耗状态下轮轨相互作用分析[D]. 成都:西南交通大学, 2009. Hong Chuanlun. Analysis of worn wheel/rail interaction on heavy-haul railway curve[D]. Chengdu:Southwest Jiaotong University, 2009. (in Chinese)
[6] 常崇义. 有限元轮轨滚动接触理论及其应用研究[D]. 北京:中国铁道科学研究院, 2010. Chang Chongyi. A study on wheel/rail rolling contact theory based on finite element method and its applying[D]. Beijing:China Academy of Railway Sciences, 2010. (in Chinese)
[7] Zhao X. Dynamic wheel/rail rolling contact at singular defects with application to squats[D]. Delft:Delft University of Technology, 2012.
[8] 肖乾. 轮轨滚动接触弹塑性分析及疲劳损伤研究[D]. 北京:中国铁道科学研究院, 2012. Xiao Qian. The elasto-plastic analysis and fatigue damage research of wheel/rail rolling contact[D]. Beijing:China academy of railway sciences, 2012. (in Chinese)
[9] 赵鑫, 温泽峰, 王衡禹, 等. 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49(18):1-7. Zhao Xin, Wen Zefeng, Wang Hengyu, et al. 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Chinese Journal of Mechanical Engineering, 2013, 49(18):1-7. (in Chinese)
[10] 宋华, 杨建, 张月, 等. 非线性稳态曲线通过时轮轨滚动接触的数值求解方法[J]. 中国铁道科学, 2015, 36(5):80-85. Song Hua, Yang Jian, Zhang Yue, et al. Numerical solution method for wheel-rail rolling contact of nonlinear steady-state curve negotiating[J]. China Railway Science, 2015, 36(5):80-88. (in Chinese)
[11] Zhao X, Zhao X, Liu C, et al. A study on dynamic stress intensity factors of rail cracks at high speeds by a 3D explicit finite element model of rolling contact[J]. Wear, 2016, 366-367(11):60-70.
[12] 赵小罡, 赵鑫, 温泽峰, 等. 轮轨黏着系数对钢轨直裂纹瞬态扩展行为的影响[J]. 工程力学, 2018, 35(5):248-254. Zhao Xiaogang, Zhao Xin, Wen Zefeng, et al. Influence of wheel-rail adhesion coefficient on transient propagation of a vertical rail crack[J]. Engineering Mechanics, 2018, 35(5):248-254. (in Chinese)
[13] 刘超, 赵鑫, 赵小罡, 等. 单侧钢轨波磨对两侧轮轨瞬态响应的影响分析[J]. 机械工程学报, 2017, 53(22):117-124. Liu Chao, Zhao Xin, Zhao Xiaogang, et al. Analyses of transient wheel-rail interactions excited by unilateral rail corrugation[J]. Chinese Journal of Mechanical Engineering, 2017, 53(22):117-124. (in Chinese)
[14] Chaar N, Berg M. Simulation of vehicle-track interaction with flexible wheelsets, moving track models and field tests[J]. Vehicle System Dynamics, 2006, 44(Supp1):921-931.
[15] 罗仁, 石怀龙. 铁道车辆系统动力学及应用[M]. 成都:西南交通大学出版社, 2018. Luo Ren, Shi Huailong. Dynamics of railway vehicle systems and application[M]. Chengdu:Southwest Jiaotong University Press, 2018. (in Chinese)
[16] 刘超, 赵鑫, 安博洋, 等. 钢轨短波长波磨处的高速滚动接触分析[J]. 润滑与密封, 2015, 40(8):40-46. Liu Chao, Zhao Xin, An Boyang, et al. Study on high-speed wheel-rail rolling contract on short-pitch rail corrugation[J]. Lubrication Engineering, 2015, 40(8):40-46. (in Chinese)
[1] 于春广, 陶功权. 地铁车轮磨耗测试及数值仿真[J]. 工程力学, 2016, 33(1): 201-208,245.
[2] 罗 仁;曾 京. 空气弹簧控制的摆式列车动力学仿真研究[J]. 工程力学, 2009, 26(3): 240-245.
[3] 金新灿;孙守光;陈光雄. 车辆通过道岔时转向架结构系统振动特性研究[J]. 工程力学, 2007, 24(1): 0-185.
[4] 张进秋;陆念力;王光远;吕建刚. 剪切阀式磁流变阻尼器动态特性实验研究[J]. 工程力学, 2005, 22(3): 11-15.
[5] 金学松;温泽峰;张卫华;曾京;周仲荣;刘启跃. 世界铁路发展状况及其关键力学问题 全国结构工程学术会议特邀报告[J]. 工程力学, 2004, 21(S1): 90-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王文炜;赵国藩;黄承逵. 模拟不中断交通状况下粘贴碳纤维布加固钢筋混凝土梁试验研究[J]. 工程力学, 2006, 23(5): 56 -61 .
[2] 刘毅;金峰. 叠层复合材料方板多孔形状优化[J]. 工程力学, 2006, 23(5): 113 -118 .
[3] 李志军;Devinder S Sodhi;卢鹏. 渤海海冰工程设计参数分布[J]. 工程力学, 2006, 23(6): 167 -172 .
[4] 亢战;赵红兵;顾元宪. 金属预成形优化设计及凝聚函数方法[J]. 工程力学, 2006, 23(10): 96 -100 .
[5] 彭芳乐;李福林;江智森;龙冈文夫. 任意加载条件下土工合成材料的弹粘塑性及本构模型[J]. 工程力学, 2009, 26(8): 50 -058 .
[6] 赵宝虎;王燕群;岳 澄;亢一澜;王 辉. 盾构始发过程反力架应力监测与安全评价[J]. 工程力学, 2009, 26(9): 105 -111 .
[7] 许福友;马如进;陈艾荣;王达磊. 苏通大桥全桥气弹模型设计与模态调试[J]. 工程力学, 2009, 26(12): 150 -154, .
[8] 金学松;郭 俊;肖新标;温泽峰;周仲荣. 高速列车安全运行研究的关键科学问题[J]. 工程力学, 2009, 26(增刊Ⅱ): 8 -022, .
[9] 徐建新;李顶河;卢 翔;卿光辉. 基于B样条小波有限元的压电材料层合板灵敏度分析[J]. 工程力学, 2010, 27(6): 194 -201 .
[10] 彭建新;邵旭东;张建仁. 基于粒子群算法的劣化桥面铺装多目标组合维护策略优化研究[J]. 工程力学, 2011, 28(2): 205 -211 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日