工程力学 ›› 2019, Vol. 36 ›› Issue (12): 69-78.doi: 10.6052/j.issn.1000-4750.2018.11.0592

• 土木工程学科 • 上一篇    下一篇

氯离子侵蚀下低矮RC剪力墙抗震性能试验研究

郑山锁1,2, 周炎1,2, 李强强4, 龙立1,2, 董立国1,2, 贺金川3   

  1. 1. 西安建筑科技大学土木工程学院, 西安 710055;
    2. 西安建筑科技大学结构工程与抗震教育部重点实验室, 西安 710055;
    3. 西安建筑科技大学建筑设计研究院, 西安 710055;
    4. 东南大学土木工程学院, 南京 210096
  • 收稿日期:2018-10-31 修回日期:2019-01-08 出版日期:2019-12-25 发布日期:2019-05-18
  • 通讯作者: 周炎(1993-),男,湖北随州人,博士生,从事结构工程与工程结构抗震研究(E-mail:zhouyan@live.xauat.edu.cn). E-mail:zhouyan@live.xauat.edu.cn
  • 作者简介:郑山锁(1960-),男,陕西渭南人,教授,博士,博导,从事结构工程与工程结构抗震研究(E-mail:zhengshansuo@263.com);李强强(1992-),男,陕西咸阳人,博士生,从事结构工程与工程结构抗震研究(E-mail:shushengdemeng@gmail.com);龙立(1992-),男,重庆酉阳人,博士生,从事结构工程与工程结构抗震研究(E-mail:1152684330@qq.com);董立国(1990-),男,山西晋中人,博士生,从事结构工程与工程结构抗震研究(E-mail:dlg_15@163.com);贺金川(1962-),女,陕西西安人,高工,学士,从事建筑结构抗震设计研究(E-mail:1138088650@qq.com).
  • 基金资助:
    国家自然科学基金项目(51678475);国家科技支撑计划项目(2013BAJ08B03);陕西省重点研发计划项目(2017ZDXM-SF-093);陕西省教育厅产业化项目(18JC020)

EXPERIMENTAL STUDY ON ASEISMIC BEHAVIOR OF SQUAT RC SHEAR WALLS DUE TO CHLORIDE ION EROSION

ZHENG Shan-suo1,2, ZHOU Yan1,2, LI Qiang-qiang4, LONG Li1,2, DONG Li-guo1,2, HE Jin-chuan3   

  1. 1. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China;
    2. Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education(XAUAT), Xi'an 710055, China;
    3. Architecture Design & Research Group of Xi'an University of Architecture & Technology, Xi'an 710055, China;
    4. School of Civil Engineering, Southeast University, Nanjing, 210096, China
  • Received:2018-10-31 Revised:2019-01-08 Online:2019-12-25 Published:2019-05-18

摘要: 基于人工气候环境模拟技术,对5榀低矮RC剪力墙试件进行加速腐蚀试验,继而对其进行拟静力加载试验,研究氯离子侵蚀下锈蚀程度对低矮RC剪力墙承载能力、变形能力及剪切变形占总水平位移比等的影响规律。结果表明:在氯离子侵蚀作用下,低矮RC剪力墙沿暗柱纵筋方向的裂缝数量较暗柱箍筋和分布筋多,宽度更宽;当水平分布筋锈蚀率从0%增大到16.56%时,试件承载能力、总体变形能力、延性等方面则均有不同程度的退化,其中承载力削弱了12.6%,延性降低了23.0%,且开裂、屈服和峰值特征点下剪切变形占总水平变形比均逐渐增大,三个特征点平均剪切变形占比从22%提高到36%,破坏时剪切破坏特征愈加明显。该文所得研究成果可为氯离子侵蚀作用下锈蚀低矮RC剪力墙构件的抗震性能研究和含低矮RC剪力墙结构的全寿命周期抗震性能评估提供理论支撑。

关键词: 锈蚀, 低矮RC剪力墙, 拟静力加载试验, 抗震性能, 剪切变形

Abstract: In order to study the influence of corrosion degree on the bearing capacity, deformation capacity and ratio of shear deformation to total horizontal displacement of squat RC shear wall due to chloride ion erosion, the artificial climatic simulation technology was used to accelerate the corrosion of five squat RC shear wall specimens, and then a quasi-static loading test was carried out. The results show that under the action of chloride ion erosion, the cracks along the longitudinal reinforcement direction of the concealed column increase in quantity and become wider in width than that along the stirrups and distribution reinforcement direction. With the corrosion rate of lateral distribution reinforcement increasing from 0% to 16.56%, the bearing capacity, deformation capacity, ductility and other aspects show different degrees of degradation, of which the bearing capacity is weakened by 12.6%, the ductility is reduced by 23.0%. Simultaneously, the ratio of shear deformation to total horizontal displacement under cracking, yielding and peak points all show a growing trend, the average ratio of the three points is increased from 22% to 36%, and the brittle failure characteristics are more obvious at the time of failure. The research results obtained can provide a theoretical support for both the aseismic performance study of corroded squat RC shear wall members due to chloride ion erosion and the life-cycle aseismic performance evaluation of RC structures with squat shear walls.

Key words: corrosion, squat RC shear wall, quasi-static loading test, seismic behaviors, shear deformation

中图分类号: 

  • TU375
[1] 金伟良. 腐蚀混凝土结构学[M]. 北京:科学出版社, 2011:1-11. Jin Weiliang. Corroded concrete structures[M]. Beijing:Science Press, 2011:1-11. (in Chinese)
[2] 贡金鑫, 仲伟秋, 赵国藩. 受腐蚀钢筋混凝土偏心受压构件低周反复性能的试验研究[J]. 建筑结构学报, 2004, 25(5):92-97. Gong Jinxin, Zhong Weiqiu, Zhao Guofan. Experimental study on low-cycle behavior of reinforced concrete member under eccentric compression[J]. Journal of Building Structures, 2004, 25(5):92-97. (in Chinese)
[3] 郑山锁, 董立国, 左河山, 等. 人工气候环境下锈蚀RC框架柱抗震性能试验研究[J]. 建筑结构学报, 2018, 39(4):28-36. Zheng Shansuo, Dong Liguo, Zuo Heshan, et al. Experimental investigation on seismic behaviors of corroded RC frame columns in artificial climate[J]. Journal of Building Structures, 2018, 39(4):28-36. (in Chinese)
[4] 郑山锁, 刘巍, 左河山, 等. 近海大气环境下考虑锈蚀的不同剪跨比RC框架梁抗震性能试验[J]. 工程力学, 2018, 35(4):78-86. Zheng Shansuo, Liu Wei, Zuo Heshan, et al. Aseismic performance test of RC frame beams considering corrosion with different shear span ratio in the coastal atmosphere[J]. Engineering Mechanics, 2018, 35(4):78-86.(in Chinese)
[5] 徐善华, 牛荻涛. 锈蚀钢筋混凝土简支梁斜截面抗剪性能研究[J]. 建筑结构学报, 2004, 25(5):98-104. Xu Shanhua, Niu Ditao. The shear behavior of corroded simply supported reinforced concrete beam.[J]. Journal of Building Structures, 2004, 25(5):98-104. (in Chinese)
[6] Afsar Dizaj E, Madandoust R, Kashani M M. Exploring the impact of chloride-induced corrosion on seismic damage limit states and residual capacity of reinforced concrete structures[J]. Structure and Infrastructure Engineering, 2018, 14(6):714-729.
[7] Yang S, Song X, Jia H, et al. Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebar[J]. Construction & Building Materials, 2016, 121:319-327.
[8] Guo A, Li H, Ba X, et al. Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment[J]. Engineering Structures, 2015, 105:1-11.
[9] Hidalgo P A, Ledezma C A, Jordan R M. Seismic behavior of squat reinforced concrete shear walls[J]. Earthquake Spectra, 2002, 18(2):287-308.
[10] Greifenhagen C, Lestuzzi P. Static cyclic tests on lightly reinforced concrete shear walls[J]. Engineering Structures, 2005, 27(11):1703-1712.
[11] Kuang J S, Ho Y B. Seismic behavior and ductility of squat reinforced concrete shear walls with nonseismic detailing[J]. Aci Structural Journal, 2008, 105(2):225-231.
[12] Luna B N, Rivera J P, Whittaker A S. Seismic behavior of low-aspect-ratio reinforced concrete shear walls[J]. ACI Structural Journal, 2015, 112(5):593.
[13] 袁迎曙, 章鑫森, 姬永生. 人工气候与恒电流通电法加速锈蚀钢筋混凝土梁的结构性能比较研究[J]. 土木工程学报, 2006, 39(3):42-46. Yuan Yingshu, Zhang Xinsen, Ji Yongsheng. A comparative study on structural behavior of deteriorated reinforced concrete beam under two different environments[J]. China Civil Engineering Journal, 2006, 39(3):42-46. (in Chinese)
[14] 蒋连接, 袁迎曙. 反复荷载下锈蚀钢筋混凝土柱力学性能的试验研究[J]. 工业建筑, 2012, 42(2):66-69. Jiang Lianjie, Yuan Yingshu. Experimental study on mechanical behavior of corroded reinforced concrete column under cyclic loading[J]. Industrial Construction, 2012, 42(2):66-69. (in Chinese)
[15] Vidal T, Castel A, Francois R. Analyzing crack width to predict corrosion in reinforced concrete. Cement and Concrete Research, 2004, 34(1):165-174.
[16] 郑山锁, 孙龙飞, 刘小锐, 等. 近海大气环境下锈蚀RC框架节点抗震性能试验研究[J]. 土木工程学报, 2015, 48(12):63-71. Zheng Shansuo, Sun Longfei, Liu Xiaorui, et al. Experimental research on seismic behaviors of beam-column joints of corroded RC frame in the coastal atmosphere[J]. China Civil Engineering Journal, 2015, 48(12):63-71. (in Chinese)
[17] 马亚飞, 王磊, 张建仁. 锈胀钢筋混凝土拱肋承载力试验与模拟[J]. 工程力学, 2017, 34(3):155-161. Ma Yafei, Wang Lei, Zhang Jianren. Experimental and numerical studies on reinforced concrete arch ribs with corrosion-induced cracks[J]. Engineering Mechanics, 2017, 34(3):155-161. (in Chinese)
[18] GB/T 50082-2009, 普通混凝土长期性能和耐久性能试验方法标准[S]. 北京:中国建筑工业出版社, 2009. GB/T 50082-2009, Standard for test methods of long-term performance and durability of ordinary concrete[S]. Beijing:China Architecture & Building Press, 2009. (in Chinese)
[19] 姚谦峰, 陈平. 土木工程结构试验[M]. 北京:中国建筑工业出版社, 2001:219-221. Yao Qianfeng, Chen Ping. Civil engineering structural experiment[M]. Beijing:China Architecture & Building Press, 2001:219-221. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[3] 张浩, 连鸣, 苏明周, 程倩倩, 关彬林. 含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(S1): 78-85.
[4] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[5] 赵宪忠, 戴柳丝, 黄兆祺, 任重. 钢货架结构研究现状与关键技术[J]. 工程力学, 2019, 36(8): 1-15.
[6] 邢国华, 杨成雨, 常召群, 秦拥军, 张广泰. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. 工程力学, 2019, 36(8): 87-95.
[7] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式钢管混凝土格构柱拟动力试验研究[J]. 工程力学, 2019, 36(7): 67-78.
[8] 侯立群, 闫维明, 陈适才, 陆新征. 内置角钢改进夹心节点抗震性能研究与抗剪承载力计算[J]. 工程力学, 2019, 36(7): 79-88.
[9] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[10] 余朔, 金浩, 周顺华, 毕湘利. 氯离子及迷流共同作用下持荷盾构管片钢筋锈层形态[J]. 工程力学, 2019, 36(7): 174-183.
[11] 王宇航, 刘元九, 周绪红. 腹板屈曲约束钢连梁抗震性能研究[J]. 工程力学, 2019, 36(6): 49-59,69.
[12] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[13] 王英俊, 梁兴文. 预期损伤部位采用FRC梁柱组合件层间剪力-变形计算模型研究[J]. 工程力学, 2019, 36(6): 79-91.
[14] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[15] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 纵智育;辛克贵;王珊. 张力膜结构初始形态分析的曲面四边形单元[J]. 工程力学, 2006, 23(3): 32 -36,2 .
[2] 钟阳;张永山. 矩形悬臂厚板的解析解[J]. 工程力学, 2006, 23(2): 52 -55,4 .
[3] 经来旺;高全臣;刘飞;牛学超. 深立井井壁破裂的力学机理及破裂预测研究[J]. 工程力学, 2006, 23(3): 156 -161, .
[4] 刘闯;张雄;陆明万. 用ALE格式有限元法分析快中子增殖堆的假想堆芯破损事故[J]. 工程力学, 2006, 23(2): 157 -162 .
[5] 张建华;刘建军;张庆国;何玉敖. 基于平衡降阶法的结构振动模态预测控制[J]. 工程力学, 2006, 23(5): 20 -23 .
[6] 刘占芳;姜乃斌;李思平. 饱和多孔介质一维瞬态波动问题的解析分析[J]. 工程力学, 2006, 23(7): 19 -24 .
[7] 黄斌;史文海. 随机结构弹性屈曲的递推求解方法[J]. 工程力学, 2006, 23(8): 36 -41 .
[8] 蒋友宝;冯健;孟少平. 结构损伤识别中模态跃迁的研究[J]. 工程力学, 2006, 23(6): 35 -40,7 .
[9] 孙振忠;杨玉英. 薄板剪应力起皱研究[J]. 工程力学, 2006, 23(7): 35 -39 .
[10] 陆新征;叶列平;滕锦光;庄江波;江见鲸. FRP片材与混凝土粘结性能的精细有限元分析[J]. 工程力学, 2006, 23(5): 74 -82 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日