工程力学 ›› 2019, Vol. 36 ›› Issue (10): 229-237.doi: 10.6052/j.issn.1000-4750.2018.11.0590

• 机械工程学科 • 上一篇    下一篇

高寒动车组车轮磨耗演变特性及其影响分析

谢清林, 陶功权, 王鹏, 李伟, 温泽峰   

  1. 西南交通大学牵引动力国家重点实验室, 四川, 成都 610031
  • 收稿日期:2018-11-03 修回日期:2019-02-25 出版日期:2019-10-25 发布日期:2019-03-25
  • 通讯作者: 温泽峰(1976-),男,广西人,研究员,博士,博导,主要从事轮轨关系研究(E-mail:zfwen@home.swjtu.edu.cn). E-mail:zfwen@home.swjtu.edu.cn
  • 作者简介:谢清林(1995-),男,甘肃人,硕士生,主要从事车轮磨耗与车辆动力学研究(E-mail:edison_xie_404@163.com);陶功权(1989-),男,湖南人,助理研究员,博士,主要从事轮轨关系研究(E-mail:gq_tao@163.com);王鹏(1990-),男,安徽人,博士生,主要从事高速铁路检测研究(E-mail:15298285012@163.com);李伟(1985-),男,湖北人,助理研究员,博士,主要从事轮轨接触疲劳研究(E-mail:1022liwei@163.com).
  • 基金资助:
    国家自然科学基金项目(U1734201);牵引动力国家重点实验室自主课题项目(2017TPL_T05)

WHEEL WEAR EVOLUTION CHARACTERISTICS OF ALPINE HIGH-SPEED EMU AND ANALYSIS OF ITS INFLUENCE

XIE Qing-lin, TAO Gong-quan, WANG Peng, LI Wei, WEN Ze-feng   

  1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2018-11-03 Revised:2019-02-25 Online:2019-10-25 Published:2019-03-25

摘要: 对某线路上运行的高寒动车组车轮磨耗进行长期跟踪测试,得到车轮磨耗演变规律。将实测车轮踏面分别与CHN60轨和60 N轨匹配,分析车轮磨耗对轮轨接触几何关系和接触力学特性的影响。利用多体动力学软件SIMPACK建立车辆动力学仿真模型,研究车轮磨耗过程中车辆动力学性能的演变规律。研究结果表明:车轮踏面磨耗随运行里程呈线性增加趋势,动车和拖车平均磨耗速率分别为0.0434 mm/万千米和0.0398 mm/万千米,且几乎没有轮缘磨耗。等效锥度随运行里程呈前期增长较快后期平缓的非线性特性,且与CHN60匹配时等效锥度明显高于与60 N轨匹配。实测轮轨匹配下的力学特性及动力学性能均略有下降,车辆与60 N轨匹配时体现出更好的服役性能。

关键词: 高寒动车组, 车轮磨耗, 轮轨接触关系, 动力学性能, 跟踪测试

Abstract: A long-term wheel wear tracking test of an alpine high-speed EMU was carried out on a certain line. The evolution rule of wheel wear was obtained. The measured wheel profiles matched with CHN60 rail and 60N rail profiles, respectively. The influence of wheel wear on wheel-rail contact geometrical relationship and contact mechanical characteristics was analyzed. A vehicle dynamic model was established by the multibody dynamic analysis software SIMPACK to study the evolution of vehicle dynamic performance with the evolution of wheel wear. The results indicates that the wheel tread wear increases linearly with the operation mileage, while there is little flange wear. The average tread wear rates of the motor and trailer cars are 0.0434 mm per 10000 km and 0.0398 mm per 10000 km, respectively. The equivalent conicity increases with operation mileage in a nonlinear way, which increases rapidly in the early stage and gently in the later period. When the measurement wheel profiles matched with CHN60 rail profile, the equivalent conicity is significantly higher than that for wheel profiles matching with 60N rail profile. The mechanical properties and dynamic performance decrease slightly under the measured wheel-rail profiles, and the vehicle has a better service when running on 60N rail.

Key words: alpine EMU, wheel wear, wheel-rail contact relationship, dynamic performance, tracking test

中图分类号: 

  • U211.5
[1] 杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(1):217-460. Yang Guowei, Wei Yujie, Zhao Guilin, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(1):217-460. (in Chinese)
[2] Wang Jianbin, Song Chunyuan, Wu Pingbo, et al. Wheel reprofiling interval optimization based on dynamic behavior evolution for high speed trains[J]. Wear, 2016(366/367):316-324.
[3] Shi Huailong, Wang Jianbin, Wu Pingbo, et al. Field measurements of the evolution of wheel wear and vehicle dynamics for high-speed trains[J]. Vehicle System Dynamics, 2018, 56(8):1187-1206.
[4] Gan Feng, Dai Huanyun, Gao Hao, et al. Wheel-rail wear progression of high speed train with type S1002CN wheel treads[J]. Wear, 2015(328/329):569-558.
[5] 干峰, 戴焕云, 高浩, 等. 铁道车辆不同踏面等效锥度和轮轨接触关系计算[J]. 铁道学报, 2013, 35(9):19-24. Gan Feng, Dai Huanyun, Gao Hao, et al. Calculation of equivalent conicity and wheel-rail contact relationship of different railway vehicle treads[J]. Journal of the China Railway Society, 2013, 35(9):19-24. (in Chinese)
[6] 马晓川, 王平, 徐井芒, 等. 基于LMA型面磨耗车轮与60N钢轨匹配的高铁车辆动力学性能分析[J]. 中国铁道科学, 2018, 39(1):93-99. Ma Xiaochuan, Wang Ping, Xu Jingmang, et al. Dynamic performance analysis of high speed vehicle based on LMA worn wheel matching with 60N rail[J]. China Railway Science, 2018, 39(1):93-99. (in Chinese)
[7] 金学松, 张雪珊, 张剑, 等. 轮轨关系研究中的力学问题[J]. 机械强度, 2005, 27(4):408-418. Jin Xuesong, Zhang Xueshan, Zhang Jian, et al. Mechanics in performance of wheel-rail[J]. Journal of Mechanical Strength, 2005, 27(4):408-418. (in Chinese)
[8] 金学松, 赵国堂, 梁树林, 等. 高速铁路轮轨磨损特征、机理、影响和对策-车轮踏面横向磨耗[J]. 机械工程学报, 2018, 54(4):3-13. Jin Xuesong, Zhao Guotang, Liang Shulin, et al. Characteristics, mechanisms, influences and counter measures of high speed wheel/rail wear-transverse wear of wheel tread[J]. Journal of Mechanical Engineering, 2018, 54(4):3-13. (in Chinese)
[9] 孙宇, 朱胜阳, 翟婉明. 车轮踏面凹形磨耗对轮轨相互作用的影响研究[J]. 机械工程学报, 2018, 54(4):109-116. Sun Yu, Zhu Shengyang, Zhai Wanming. Influence of tread hollow-worn wheel on wheel/rail interaction[J]. Journal of Mechanical Engineering, 2018, 54(4):109-116. (in Chinese)
[10] Cui Dabin, Li Li, Wang Hengyu, et al. High-speed EMU wheel re-profiling threshold for complex wear forms from dynamics viewpoint[J]. Wear, 2015(338/339):307-315.
[11] Karttunen K, Kabo E, Ekberg A. Numerical assessment of the influence of worn wheel tread geometry on rail and wheel deterioration[J]. Wear, 2014, 317(1/2):77-91.
[12] 黄照伟, 崔大宾, 杜星, 等. 车轮偏磨对高速列车直线运行性能的影响[J]. 铁道学报, 2013, 35(2):14-20. Huang Zhaowei, Cui Dabin, Du Xing, et al. Influence of deviated wear of wheel on performance of high-speed train running on straight tracks[J]. Journal of the China Railway Scoiety, 2013, 35(2):14-20. (in Chinese)
[13] 周清跃, 张银花, 田昌海, 等. 60 N钢轨的廓型设计及试验研究[J]. 中国铁道科学, 2014, 35(2):128-135. Zhou Qingyue, Zhang Yinhua, Tian Changhai, et al. Profile design and test study of 60N rail[J]. China Railway Science, 2014, 35(2):128-135. (in Chinese)
[14] UIC519-2004, Method for determining the equivalent conicity[S]. Paris:International Union of Railways, 2008.
[15] UIC513-1994, Evaluation of riding comfort of railway vehicles[S]. Paris:International Union of Railways, 1994.
[16] TB 10621-2014, 高速铁路设计规范[S]. 北京:国家铁路局, 2014. TB 10621-2014, Code for design of high speed railway[S]. Beijing:National Railway Administration of People's Republic of China, 2014. (in Chinese)
[17] TJ/CL008-2008, 高速动车组整车试验规范[S]. 北京:中国铁路总公司, 2008. TJ/CL008-2008, Testing of high-speed electic multiple unit on completion of constrution[S]. Beijing:China Railway Corporation, 2008. (in Chinese)
[1] 陆文教, 陶功权, 王鹏, 付青云, 关庆华, 温泽峰. 地铁车轮磨耗对轮轨接触特性及动力学性能的影响[J]. 工程力学, 2017, 34(8): 222-231.
[2] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231-236.
[3] 李 霞;金学松;温泽峰;胡 东. 计算铁路车轮轮周磨耗量的两种方法对比[J]. 工程力学, 2011, 28(1): 205-211,.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾宪武;韩大建. 多重双频率调谐质量阻尼器制振性能及对桥梁抖振的控制[J]. 工程力学, 2006, 23(1): 74 -80 .
[2] 易贤仁;陶高梁;胡在良. 钢筋混凝土烟囱预应力环箍加固效应研究[J]. 工程力学, 2006, 23(4): 109 -113 .
[3] 顾威;赵颖华;尚东伟. CFRP-钢管混凝土轴压短柱承载力分析[J]. 工程力学, 2006, 23(1): 149 -153 .
[4] 隋允康;彭细荣;叶红玲. 应力约束全局化处理的连续体结构ICM拓扑优化方法[J]. 工程力学, 2006, 23(7): 1 -7 .
[5] 彭华;游春华;孟勇. 模态曲率差法对梁结构的损伤诊断[J]. 工程力学, 2006, 23(7): 49 -53,7 .
[6] 陈常松;陈政清;颜东煌. 悬索桥主缆初始位形的悬链线方程精细迭代分析法[J]. 工程力学, 2006, 23(8): 62 -68 .
[7] 殷志祥;孙芳锦. 倒伞式可展索膜结构静力特性分析[J]. 工程力学, 2006, 23(7): 160 -164 .
[8] 朱志武;宁建国;李义. 钻孔爆破断裂控制技术研究[J]. 工程力学, 2006, 23(S1): 40 -45 .
[9] 徐 静;李宏男;李 钢;黄连壮. 考虑桩-土-结构动力相互作用的输电塔地震反应分析[J]. 工程力学, 2009, 26(9): 24 -029 .
[10] 秦 江;黄克智;黄永刚. 采用特征线方法对混合硬化情况下基于变形机制的应变梯度工程塑性理论的研究[J]. 工程力学, 2009, 26(9): 176 -185 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日