工程力学 ›› 2019, Vol. 36 ›› Issue (10): 189-201.doi: 10.6052/j.issn.1000-4750.2018.11.0584

• 土木工程学科 • 上一篇    下一篇

压弯剪作用下钢筋混凝土柱荷载-变形分析

仇建磊, 贡金鑫   

  1. 大连理工大学土木工程学院结构工程研究所, 辽宁, 大连 116024
  • 收稿日期:2018-11-03 修回日期:2019-04-28 出版日期:2019-10-25 发布日期:2019-05-09
  • 通讯作者: 贡金鑫(1964-),男,河北人,教授,博士,博导,主要从事结构可靠性理论及混凝土结构抗震研究(E-mail:jinxingong@163.com). E-mail:jinxingong@163.com
  • 作者简介:仇建磊(1992-),男,河南濮阳人,博士生,主要从事混凝土结构抗震研究(E-mail:qiu_jianlei@qq.com).
  • 基金资助:
    国家自然科学基金项目(51478077,51678104)

LOAD-DEFORMATION ANALYSIS OF REINFORCED CONCRETE COLUMNS CONSIDERING AXIAL-FLEXURE-SHEAR INTERACTION

QIU Jian-lei, GONG Jin-xin   

  1. Institute of Structural Engineering, School of Civil Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2018-11-03 Revised:2019-04-28 Online:2019-10-25 Published:2019-05-09

摘要: 为研究不同破坏模式下钢筋混凝土柱的受力机理及性能,该文提出能够考虑压弯剪相互作用的钢筋混凝土柱荷载-变形分析模型。以修正压力场理论及传统纤维截面分析法为基础,将柱受力过程分为弯曲控制及剪切控制两个阶段,分别对控制截面受拉区和受压区进行分析,同时考虑了纵筋受压屈曲及P-Δ效应的影响,进而得到柱水平受剪承载力及其变形。最后,为验证模型的有效性,对所收集的拟静力试验柱进行了模拟。结果表明,压弯剪作用下钢筋混凝柱会表现出弯曲、弯剪及剪切三种不同的破坏模式,其荷载-变形性能差异较大,采用该文所提模型所得计算曲线与试验结果吻合较好,该模型能够被用于钢筋混凝土柱抗震性能分析。

关键词: 非线性分析, 钢筋混凝土, 柱, 荷载-变形, 压弯剪作用

Abstract: In order to study the load-bearing and performance of reinforced concrete columns with different failure modes, a load-deformation analysis model for reinforced concrete columns is proposed, considering the axial-shear-flexure interaction. Based on the modified compression field theory and the traditional fiber section analysis method, the whole loading process of the column is divided into two stages, i.e., bending-control stage and shear-control stage. The tension and compression zones of the control section are analyzed separately, considering the effect of compressive buckling of longitudinal reinforcement and the P-Δ effect, then the shear capacity and lateral deformation of the column are obtained. Finally, the collected pseudo-static test columns are simulated to verify the effectiveness of the proposed model. The results show that the reinforced concrete columns under axial-shear-flexure interaction will fail in three failure modes including flexural failure, flexural-shear failure and shear failure, the load-deformation performance of which varies greatly. The calculated curves obtained by the proposed model are in a good agreement with experimental results, so that the proposed model can be applied to analyze the aseismic performance of reinforced concrete columns.

Key words: nonlinear analysis, reinforced concrete, column, lateral load-deformation behavior, axial-flexureshear interaction

中图分类号: 

  • TU375.3
[1] Priestly M J N, Verma R, Xiao Y. Seismic shear strength of reinforced concrete columns[J]. Journal of Structural Engineering, ASCE, 1994, 120(8):2310-2329.
[2] 吴涛, 刘喜, 邢国华. 基于贝叶斯理论的钢筋混凝土柱受剪承载力计算[J]. 工程力学, 2013, 30(5):195-201, 206. Wu Tao, Liu Xi, Xing Guohua. Study on the shear capacity of reinforced concrete column based on bayesian theory[J]. Engineering Mechanics, 2013, 30(5):195-201, 206. (in Chinese)
[3] 余波, 陈冰, 吴然立. 剪切型钢筋混凝土柱抗剪承载力计算的概率模型[J]. 工程力学, 2017, 34(7):136-145. Yu Bo, Chen Bing, Wu Ranli. Study on the shear capacity of reinforced concrete column based on bayesian theory[J]. Engineering Mechanics, 2017, 34(7):136-145. (in Chinese)
[4] Wang Z, Wang J Q, Qi J N. Explicit analytical model for seismic shear strength of RC bridge columns[J]. Magazine of Concrete Research, 2019, 71(18):935-948.
[5] Mostafaei H, Vecchio F J, Kabeyasawa T. Deformation capacity of reinforced concrete columns[J]. ACI Structural Journal, 2009, 106(2):187-195.
[6] 张勤, 王娜, 贡金鑫. 钢筋混凝土柱地震破坏模式及考虑剪切变形的抗震性能研究进展[J]. 建筑结构学报, 2017, 38(8):1-13. Zhang Qin, Wang Na, Gong Jinxin. State of the art of seismic performance including shear effects and failure modes of reinforced concrete columns[J]. Journal of Building Structures, 2017, 38(8):1-13. (in Chinese)
[7] 刘鸣, 陆本燕, 刘伯权. 钢筋混凝土桥墩破坏模式识别方法[J]. 中国公路学报, 2011, 24(3):58-63. Liu Ming, Lu Benyan, Liu Boquan. Failure mode identification method of reinforced concrete bridge pier[J]. China Journal of Highway and Transport, 2011, 24(3):58-63. (in Chinese)
[8] Qi Y L, Han X L, Ji J. Failure mode classification of reinforced concrete column using Fisher method[J]. Journal of Central South University, 2013, 20(10):2863-2869.
[9] Ma Y, Gong J X. Probability identification of seismic failure modes of reinforced concrete columns based on experimental observations[J]. Journal of Earthquake Engineering, 2018, 22(10):1881-1899.
[10] 陶慕轩, 丁然, 潘文豪, 等. 传统纤维模型的一些新发展[J]. 工程力学, 2018, 35(3):1-21. Tao Muxuan, Ding Ran, Pan Wenhao, et al. Some advances in conventional fiber beam-column model[J]. Engineering Mechanics, 2018, 35(3):1-21. (in Chinese)
[11] Vecchio F J. Nonlinear finite element analysis of reinforced concrete membranes[J]. ACI Structural Journal, 1989, 86(1):26-35.
[12] Maekawa K, An X. Shear failure and ductility of RC columns after yielding of main reinforcement[J]. Engineering Fracture Mechanics, 2000, 65(2/3):335-368.
[13] Hsu T T C, Mo Y L. Unified theory of concrete structures[M]. Chichester John Wiley & Sons, 2010:381-406.
[14] Mostafaei H, Kabeyasawa T. Axial-shear-flexure interaction approach for reinforced concrete columns[J]. ACI Structural Journal, 2007, 104(2):218.
[15] Mostafaei H, Vecchio F J. Uniaxial shear-flexure model for reinforced concrete elements[J]. Journal of structural engineering, 2008, 134(9):1538-1547.
[16] Moharrami M, Koutromanos I, Panagiotou M, et al. Analysis of shear-dominated RC columns using the nonlinear truss analogy[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(5):677-694.
[17] Ou Y C, Nguyen N D. Modified axial-shear-flexure interaction approaches for uncorroded and corroded reinforced concrete beams[J]. Engineering Structures, 2016(128):44-54.
[18] 魏巍巍, 贡金鑫. 钢筋混凝土柱荷载-变形计算的理论模型[J]. 建筑科学与工程学报, 2012, 29(1):38-49. Wei Weiwei, Gong Jinxin. Theoretical models of load-deformation calculation for reinforced concrete columns[J]. Journal of Architecture and Civil Engineering, 2012, 29(1):38-49. (in Chinese)
[19] Setzler E J, Sezen H. Model for the lateral behavior of reinforced concrete columns including shear deformations[J]. Earthquake Spectra, 2008, 24(2):493-511.
[20] Lodhi M S, Sezen H. Estimation of monotonic behavior of reinforced concrete columns considering shearflexure-axial load interaction[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(15):2159-2175.
[21] 蔡茂, 顾祥林, 华晶晶, 等. 考虑剪切作用的钢筋混凝土柱地震反应分析[J]. 建筑结构学报, 2011, 32(11):97-108. Cai Mao, Gu Xianglin, Hua Jingjing, et al. Seismic response analysis of reinforced concrete columns considering shear effects[J]. Journal of Building Structures, 2011, 32(11):97-108. (in Chinese)
[22] 张勤, 贡金鑫. 弯剪破坏钢筋混凝土柱的荷载-变形关系[J]. 建筑科学与工程学报, 2010, 27(3):78-84. Zhang Qin, Gong Jinxin. Load-deformation relations of reinforced concrete columns under flexural-shear failure[J]. Journal of Architecture and Civil Engineering, 2010, 27(3):78-84. (in Chinese)
[23] 马颖. 钢筋混凝土柱地震破坏方式及性能研究[D]. 大连:大连理工大学, 2012. Ma Ying. Study on failure modes and seismic behavior of reinforced concrete columns[D]. Dalian:Dalian University of Technology, 2012. (in Chinese)
[24] Vecchio F J, Collins M P. The modified compression-field theory for reinforced concrete elements subjected to shear[J]. ACI Journal, 1986, 83(2):219-231.
[25] 曲哲, 初明进. 转角软化桁架模型与修正压力场理论的比较研究[J]. 工程力学, 2009, 26(3):36-42. Qu Zhe, Chu Mingjin. Comparative study of rotating angle-softened truss model and modified compression field theory[J]. Engineering Mechanics, 2009, 26(3):36-42. (in Chinese)
[26] Park R L, Park R, Paulay T. Reinforced concrete structures[M]. Hoboken:John Wiley & Sons, 1975:308-309.
[27] Ueda T, Sato Y, Ito T, et al. Shear deformation of reinforced concrete beam[J]. Journal of Materials Concrete Structure Pavements, JSCE, 2002, 56(711):205-215.
[28] Hines E M, Restrepo J I, Seible F. Force-displacement characterization of well-confined bridge piers[J]. ACI Structural Journal, 2004, 101(4):537-548.
[29] Jirawattanasomkul T, Dawei Z, Ueda T. Prediction of the post-peak behavior of reinforced concrete columns with and without FRP-jacketing[J]. Engineering Structures, 2013, 56(128):1511-1526.
[30] Moehle J P. Displacement-based design of RC structures subjected to earthquakes[J]. Earthquake Spectra, 1992, 8(3):403-428.
[31] Sezen H, Moehle J P. Bond-slip behavior of reinforced concrete members[C]//Proceedings of Fib Symposium on Concrete Structures in Seismic Regions. Athens, Greece:CEB-FIP, 2003:1-10.
[32] Esmaeily G, Xiao Y. Seismic behavior of bridge columns subjected to various loading patterns[R]. Berkeley:PEER, 2002.
[33] Sezen H, Setzler E J. Reinforcement slip in reinforced concrete columns[J]. ACI Structural Journal, 2008, 105(3):280.
[34] 仇建磊, 贡金鑫. 地震作用下钢筋混凝土柱纵筋屈曲研究进展[J]. 土木工程学报, 2016, 49(5):50-62. Qiu Jianlei, Gong Jinxin. Research on buckling of longitudinal bars in RC columns under earthquake excitation:State of the art[J]. China Civil Engineering Journal, 2016, 49(5):50-62. (in Chinese)
[35] 杨红, 张洛, 张和平. 考虑纵筋屈曲及疲劳损伤的钢筋混凝土柱抗震性能试验研究与非线性分析[J]. 建筑结构学报, 2013, 34(11):130-140. Yang Hong, Zhang Luo, Zhang Heping. Experiments and nonlinear analysis on seismic behavior of RC columns considering buckling and fatigue damage of reinforcing steel bar[J]. Journal of Building Structures, 2013, 34(11):130-140. (in Chinese)
[36] 刘子珅, 杨红, 张吉庆. 基于横向挠度的钢筋屈曲状态判断方法研究[J]. 工程力学, 2018, 35(2):144-152. Liu Zikun, Yang Hong, Zhang Jiqing. Research on buckling state determination of reinforcing bars based on lateral deflection[J]. Engineering Mechanics, 2018, 35(2):144-152. (in Chinese)
[37] Dhakal R P, Maekawa K. Reinforcement stability and fracture of cover concrete in reinforced concrete members[J]. Journal of Structural Engineering, 2002, 128(10):1253-1262.
[38] 苏俊省, 王君杰, 宋彦臣, 等. 钢筋混凝土柱纵筋屈曲长度简化计算模型[J]. 工程力学, 2017, 34(2):162-170. Su Junsheng, Wang Junjie, Song Yanchen, et al. Simplified calculation model of longitudinal reinforcement buckling length in RC columns[J]. Engineering Mechanics, 2017, 34(2):162-170. (in Chinese)
[39] Belarbi A, Hsu T T C. Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete[J]. ACI Structure Journal, 1994, 91(4):465-472.
[40] Park R, Priestley M J, Gill W D. Ductility of square-confined concrete columns[J]. Journal of the Structural Division, 1982, 108(4):929-950.
[41] Berry M, Parrish M, Eberhard M. PEER structural performance database, user's manual[R]. Berkeley:University of California, 2004.
[1] 代鹏, 杨璐, 卫璇, 周宇航. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(S1): 298-305.
[2] 周佳豪, 马文勇, 黄伯城. 临界雷诺数区光滑圆柱振动与气动力研究[J]. 工程力学, 2019, 36(S1): 306-310.
[3] 王元清, 乔学良, 贾连光, 张天雄, 蒋庆林. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(S1): 59-65.
[4] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[5] 杜修力, 许紫刚, 许成顺, 蒋家卫. 摩擦摆支座在地下地铁车站结构中的减震效果研究[J]. 工程力学, 2019, 36(9): 60-67,88.
[6] 侯宇, 黄振贵, 陈志华, 罗驭川. 空心圆柱低速垂直入水试验研究[J]. 工程力学, 2019, 36(9): 237-246.
[7] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[8] 邢国华, 杨成雨, 常召群, 秦拥军, 张广泰. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. 工程力学, 2019, 36(8): 87-95.
[9] 杨勇, 孙东德, 张超瑞, 薛亦聪, 陈阳, 于云龙. 钢管高强混凝土叠合构件受剪承载能力试验研究[J]. 工程力学, 2019, 36(8): 182-191.
[10] 乔崎云, 杨兆源, 牟犇, 刘倩倩. 外环板式高低梁-方钢管柱节点弹塑性剪切承载力计算[J]. 工程力学, 2019, 36(8): 192-200,209.
[11] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式钢管混凝土格构柱拟动力试验研究[J]. 工程力学, 2019, 36(7): 67-78.
[12] 周雨龙, 杜修力, 韩强. 双柱式摇摆桥墩结构体系地震反应和倒塌分析[J]. 工程力学, 2019, 36(7): 136-145.
[13] 邹慧辉, 陈万祥, 郭志昆, 周子欣. 火灾后钢管RPC柱近距离爆炸残余承载力研究[J]. 工程力学, 2019, 36(7): 184-196.
[14] 马颖, 王东升, 解河海, 白卫峰. 基于Bayesian理论的弯剪破坏钢筋混凝土柱变形能力概率模型[J]. 工程力学, 2019, 36(7): 216-226.
[15] 钱海峰, 赵婧同, 王元清, 王登峰. 考虑除尘器箱体墙板-立柱协同受力时立柱在横向荷载作用下的内力计算[J]. 工程力学, 2019, 36(7): 227-237,247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[4] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[5] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[6] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[7] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[8] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[9] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[10] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日