工程力学 ›› 2019, Vol. 36 ›› Issue (8): 1-15.doi: 10.6052/j.issn.1000-4750.2018.10.ST12

• 综述 •    下一篇

钢货架结构研究现状与关键技术

赵宪忠1, 戴柳丝1,2, 黄兆祺1, 任重1,2   

  1. 1. 同济大学土木工程学院, 上海 200092;
    2. 上海大学土木工程系, 上海 200444
  • 收稿日期:2018-10-12 修回日期:2019-05-05 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 赵宪忠(1972-),男,吉林桦甸人,教授,博士,土木工程学院院长,主要从事钢结构教学与研究(E-mail:x.zhao@tongji.edu.cn) E-mail:x.zhao@tongji.edu.cn
  • 作者简介:戴柳丝(1989-),女,山西太原人,讲师,博士,主要从事钢结构教学与研究(E-mail:liusidai@shu.edu.cn);黄兆祺(1992-),男,山西太原人,博士生,主要从事钢结构研究(E-mail:huangzhaoqi@tongji.edu.cn);任重(1983-),男,浙江宁波人,讲师,博士,主要从事钢结构教学与研究(E-mail:chongren@shu.edu.cn).
  • 基金资助:
    国家重点研发项目(2016YFC0701603)

REVIEW OF THE RESEARCH ON STEEL STORAGE RACK STRUCTURES

ZHAO Xian-zhong1, DAI Liu-si1,2, HUANG Zhao-qi1, REN Chong1,2   

  1. 1. College of Civil Engineering, Tongji University, Shanghai 200092, China;
    2. College of Civil Engineering, Shanghai University, Shanghai 200444, China
  • Received:2018-10-12 Revised:2019-05-05 Online:2019-08-25 Published:2019-08-10

摘要: 随着物流和电商行业的飞速发展,钢货架结构从单纯提供货物存储功能的简单机械类产品逐步向高位立体库、库架合一式建筑发展,这对货架结构的安全性提出更高要求。与传统钢框架结构相比,钢货架结构的托盘货载远大于结构自重,竖向荷载活恒比值可达10∶1量级;主要竖向承重构件多采用连续开孔薄壁截面,其性能受到局部屈曲、畸变屈曲、整体屈曲以及各屈曲模式间相互作用的影响;梁柱节点和柱脚节点多为半刚性挂齿式机械连接,表现出强非线性和捏拢滑移滞回特征;竖向支撑体系对整体结构稳定性的影响机制和有效性。另外,在地震作用下,货架结构的破坏模式除了主要承重构件的破坏和整体结构的垮塌外,还存在托盘货载跌落导致的货物、结构破坏和人员伤害。在钢货架结构抗震分析中,托盘货物的滑动和跌落应属于一种极限状态加以考虑,托盘与横梁间的动力摩擦系数将成为评估结构性能的一个重要参数。结合国内外已有研究成果,该文基于钢货架结构的特点,评述了现有的研究方法,综述了各基本结构要素的力学行为、整体结构的稳定性态及抗震性能,探讨了研究中的关键问题。

关键词: 钢货架结构, 开孔薄壁截面, 直接强度法, 机械式连接节点, 稳定性, 结构抗震性能

Abstract: With the rapid growth of logistics industry, steel storage racks are not just industrial products. They are commonly used in high-rise warehouses and clad racks. Therefore, the structural safety of storage racks is of vital importance. Steel storage racks are distinct from traditional moment resisting frames in the following aspects. Firstly, storage racks may carry extremely high live loads with comparatively light weight and reach up to 40 meters in height. Secondly, the uprights have open singly- or non-symmetric cross-sections and are continuously perforated along the length, the behavior of which is significantly influenced by local, distortional, global buckling and their interactions. Thirdly, the mechanical beam-to-upright connections and column bases are commonly utilized for their convenience in assembly and adjustment. Their nonlinear moment-rotation behavior and severely pinching characterization requires comprehensive investigations. Fourthly, the influences of the asymmetry configuration of the bracing system on the stability of the overall rack structure need to be carefully studied. Moreover, as for the aseismic behavior of rack structures, further investigations are required for the hysteretic behavior of beam-to-upright connections, the collapse mechanisms of the overall rack structures, and the sliding behavior between pallets and beams. It should be noted that besides usual local and global collapse mechanisms, the falling of pallets should also be considered as an additional serviceability limit state of rack structures. This paper reviews researches on the behavior of steel storage racks. A brief introduction of rack structures is provided, as well as the main research methodologies. The main research results on the static and dynamic behavior are then presented respectively. Finally, the key issues in studies of steel storage racks and the related research topics are proposed.

Key words: steel storage racks, cold-formed steel members with continuous perforations, direct strength method, mechanical connections, structural stability, seismic behavior

中图分类号: 

  • TU398.9
[1] Winter G, Peköz T. Cold-formed steel rack structures[C]//Proceedings of Second International Specialty Conference on Cold-formed Steel Structures. United States:University of Missouri-Rolla, 1973.
[2] Yu W W. Cold-formed steel design[M]. John Wiley & Sons, Inc.; 2000.
[3] Davies J M. Recent research advances in cold-formed steel structures[J]. Journal of Constructional Steel Research, 2000, 55(1):267-288.
[4] FEMA 460. Seismic considerations for steel storage racks located in areas accessible to the public[S]. Washington, D. C.:National Institute of Building Science, 2005.
[5] Castiglioni C A. Seismic behavior of steel storage pallet racking systems[M]. First ed. Berlin, Germany, Springer International Publishing, 2016.
[6] Affolter C, Piskoty G, Wullschleger L, et al. Collapse of a high storage rack[J]. Engineering Failure Analysis, 2009, 16(6):1846-1855.
[7] CECS 23:90, 钢货架结构设计规程[S]. 北京:中国计划出版社, 1990. CECS 23:90, The specification for design of steel storage racks[S]. Beijing:China Planning Press, 1990. (in Chinese)
[8] Gilbert B P, Rasmussen K J R. Impact tests and parametric impact studies on drive-in steel storage racks[J]. Engineering Structures, 2011, 33(5):1410-1422.
[9] RMI, Specification for the design, testing and utilization of industrial steel storage racks[S]. Charlotte, U.S.A:Rack Manufacturers Institute, 2012.
[10] EN 15512, Steel static storage systems-adjustable pallet racking systems-principles for structural design[S], European Committee for Standardization (CEN), Brussels, Belgium, 2009.
[11] AS/NZS 4084, Steel storage racking[S]. Standards Australia/Standards New Zealand, Sydney, Australia, 2012.
[12] Hancock G J. Distortional buckling of steel storage rack columns[J]. Journal of Structural Engineering, ASCE, 1984, 111(12):2770-2783.
[13] Kwon Y B, Hancock G J. Tests of cold-formed channels with local and distortional buckling[J]. Journal of Structural Engineering, ASCE, 1992, 118(7):1786-1803.
[14] Zhang P, Alam M S. Experimental investigation and numerical simulation of pallet-rack stub columns under compression load[J]. Journal of Constructional Steel Research, 2017, 133:282-299.
[15] 秦如. 钢货架结构开孔立柱承载力计算[D]. 上海:同济大学, 2012. Qin Ru. Method of calculating the ultimate load bearing capacity of perforated uprights used in steel storage racks[D]. Shanghai:Tongji University, 2012. (in Chinese)
[16] Zhao X, Ren C, Qin R. An experimental investigation into perforated and non-perforated steel storage rack uprights[J]. Thin-Walled Structures, 2017, 112:159-172.
[17] Pu Y, Godley M H R, Beale R G, et al. Prediction of ultimate capacity of perforated lipped channels[J]. Journal of Structural Engineering, ASCE, 1999, 125(5):510-514.
[18] Moen C D, Schafer B W. Experiments on cold-formed steel columns with holes[J]. Thin-Walled Structures, 2008, 46:1164-1182.
[19] Kumar V V, Jayachandran S A. Experimental investigation and evaluation of Direct Strength Method on beam-column behavior of uprights[J]. Thin-Walled Structures, 2016, 102:165-179.
[20] Talebian N, Gilbert B P, Cao H P, et al, Karampour H. Local and distortional biaxial bending capacities of cold-formed steel storage rack uprights[J]. Journal of Structural Engineering, ASCE, 2018, 144(6):04018062.
[21] Moen C D, Schafer B W. Elastic buckling of cold-formed steel columns and beams with holes[J]. Engineering Structures, 2009, 31(12):2812-2824.
[22] Ren C, Wang B, Zhao X. Numerical predictions of distortional-global buckling interaction of perforated rack uprights in compression[J]. Thin-Walled Structures, 2019, 136:292-301.
[23] AISI S100. North American specification for the design of cold-formed steel structural members[S]. American Iron and Steel Institute, AISI S100-2007, AISI Standard; 2007.
[24] AS/NZS4600, Cold-formed steel structures[S]. Australian/New Zealand Standard, AS/NZS 4600:2005, Sydney, Australia, Standards Australia, 2005.
[25] EN1993-1-3, Eurocode 3-design of steel structures-art 1-3:general rules supplementary rules for cold-formed members and sheeting[S]. Brussels:European Committee for Standardization, EN1993-1-3:2006.
[26] GB 50018-2002, 冷弯薄壁型钢结构设计规范[S]. 北京:中国计划出版社, 2002. GB 50018-2002, Technical code of cold-formed thin-wall steel structures[S]. Beijing:China Planing Press, 2002. (in Chinese)
[27] Schafer B W. Review:The direct strength method of cold-formed steel member design[J]. Journal of Constructional Steel Research, 2008, 64(7):766-778.
[28] Peköz T. Development of a unified approach to the design of cold formed steel members[R]. Rep. No. CF 87-1, American Iron and Steel Institute, Washington, DC, 1986.
[29] Elias G C, Henrique D A N L, Sarmanho A M C, et al. Ultimate load of steel storage systems uprights[J].Engineering Structures, 2018, 170:53-62.
[30] Almeida N L H D, Cunha S A M, Faria V O, et al. Numerical and experimental analysis of perforated rack members under compression[J]. Thin-Walled Structures, 2018, 130:176-193.
[31] 吴晓风. 组装式货架立柱组平面内整体稳定承载力的研究[D]. 上海:同济大学, 2016. Wu Xiaofeng. Research on the in-plane stability of upright frames[D]. Shanghai:Tongji University, 2016. (in Chinese)
[32] Gilbert B P, Rasmussen K J R, Baldassino N, et al. Determining the transverse shear stiffness of steel storage rack upright frames[J]. Journal of Constructional Steel Research, 2012, 78:107-116.
[33] Timoshenko S P, Gere J M. Theory of elastic stability[M]. Second Edition. New York:McGraw-Hill Book Co., Inc., 1961.
[34] Sajja S R, Beale R G, Godley M H R. Shear stiffness of pallet rack upright frames[J]. Journal of Constructional Steel Research, 2008, 64(7):867-874.
[35] Godley M H R, Beale R G. Investigation of the effects of looseness of bracing components in the cross-aisle direction on the ultimate load-carrying capacity of pallet rack frames[J]. Thin-Walled Structures, 2008, 46(7):848-854.
[36] Far H, Saleh A, Firouzianhaji A, A simplified method to determine shear stiffness of thin walled cold formed steel storage rack frames[J]. Journal of Constructional Steel Research, 2017, 138:799-805.
[37] Shah S N R, Sulong N H R, Jumaat M Z, et al. State-of-the-art review on the design and performance of steel pallet rack connections[J]. Engineering Failure Analysis, 2016, 66:240-258.
[38] 邢巍巍, 冯波, 阮杨捷, 等. 钢货架梁柱节点性能研究综述[J]. 江苏建筑, 2013(2):48-52. Xing Weiwei, Feng Bo, Ruan Yangjie, et al. Research review of beam to column connections' performance in storage racks[J]. Jiangsu Construction, 2013(2):48-52. (in Chinese)
[39] 成博, 武振宇. 组装式钢货架螺栓连接梁柱节点试验[J]. 建筑科学与工程学报, 2013, 30(3):71-77. Cheng Bo, Wu Zhenyu. Experiment on bolted beam-to-column connections in assembled steel storage racks[J]. Journal of Architectural and Civil Engineering, 2013, 30(3):71-77. (in Chinese)
[40] Markazi F D, Beale R G, Godley M H R. Experimental analysis of semi-rigid boltless connectors[J]. ThinWalled Structures, 1997, 28(1):57-87.
[41] Harris E. Sway behaviour of high rise steel storage racks[D]. Sydney:University of Sydney, 2006.
[42] Abdel-Jaber M, Beale R G, Godley M H R. A theoretical and experimental investigation of pallet rack structures under sway[J]. Journal of Constructional Steel Research, 2006, 62(1):68-80.
[43] Krawinkler H, Cofie N G, Astiz M A, et al. Experimental study on the seismic behavior of industrial storage racks[R]. Report No.41. The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, California,1979.
[44] Bajoria K M, Talikoti R S. Determination of flexibility of beam-to-column connectors used in thin walled cold-formed steel pallet racking systems[J]. Thin-Walled Structures, 2006, 44(3):372-380.
[45] Sarawit A T, Pekoz T. Cold-formed steel frame and beam-column design[R]. Committee on Specifications for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute, Washington DC, USA, 2003.
[46] Prabha P, Marimuthu V, Saravanan M, et al. Evaluation of connection flexibility in cold formed steel racks[J]. Journal of Constructional Steel Research, 2010, 66(7):863-872.
[47] Baldassino N, Zandonini R. Design by testing of industrial racks[J]. Advanced Steel Construction, 2011, 7(1):27-47.
[48] Gilbert B P, Rasmussen K J R. Experimental test on steel storage rack components[J]. Research Report R-899, University of Sydney, Australia, 2009.
[49] Shah S N R, Sulong N H R, Khan R, et al. Behaviour of industrial steel rack connections[J]. Mechanical Systems and Signal Processing, 2016:70-71, 725-740.
[50] Zhao X, Wang T, Chen Y, et al. Flexural behavior of steel storage rack beam-to-upright connections[J]. Journal of Constructional Steel Research, 2014, 99:161-75.
[51] 王拓. 钢货架结构挂齿式梁柱节点静力性能研究与敏感性分析[D]. 上海:同济大学, 2014. Wang Tuo. Static study and sensitivity analysis on tab-connected beam-to-upright connections of steel storage racks[D]. Shanghai:Tongji University, 2014. (in Chinese)
[52] 戴柳丝. 钢货架结构梁柱节点滞回性能研究及其对整体结构动力性能的影响[D]. 上海:同济大学, 2018. Dai Liusi. The hysteretic behaviour of beam-to-upright connections and their role in predicting the structural response of steel storage racks under seismic action[D]. Shanghai:Tongji University, 2018. (in Chinese)
[53] Dai L, Zhao X, Rasmussen K J R. Flexural behaviour of steel storage rack beam-to-upright bolted connections[J]. Thin-Walled Structures, 2018, 124:202-217.
[54] Zhao X, Dai L, Rasmussen K J R. Hysteretic behaviour of steel storage rack beam-to-upright boltless connections[J]. Journal of Constructional Steel Research, 2018, 144:81-105.
[55] Dai L, Zhao X, Rasmussen K J R. Cyclic performance of steel storage rack beam-to-upright bolted connections[J].Journal of Constructional Steel Research, 2018, 148:28-48.
[56] Markazi F D, Beale R G, Godley M H R. Numerical modelling of semi-rigid boltless connector[J]. Computers & Structures, 2001, 79(26/27/28):2391-2402.
[57] EN 1993-1-8. Eurocode 3:design of steel structures-part 1-8:design of joints. Brussels, Belgium:European Committee for Standardization, 2005.
[58] Ślęczka L, Kozłowski A. Experimental and theoretical investigations of pallet racks connections[J]. Advanced Steel Construction, 2007, 3(2):607-627.
[59] Ślęczka L, Kozłowski A. Design of beam-to-column joints in steel storage pallet racks by testing and by component method[J]. Archives of Civil Engineering, 2008, 54(1):263-291.
[60] Zhao X, Dai L, Wang T, et al. A theoretical model for the rotational stiffness of storage rack beam-to-upright connections[J]. Journal of Constructional Steel Research, 2017, 133:269-281.
[61] Godley M H R. The Behavior of storage racking baseplates[C]//Proceedings of Sixth International Conference on Steel & Aluminium Structures. United Kingdom:Oxford Brookes University, 2007.
[62] Beale R G, Godley M H R. Problems arising with pallet rack semi-rigid baseplates[C]//Proceedings of First International Conference on Steel and Composite Structures. South Korea:Pusan, 2001.
[63] Gilbert B P, Rasmussen K J R. Finite element modeling of steel drive-in rack structures[R]. Report No. R901. School of Civil Engineering, University of Sydney, Australia, 2009.
[64] Petrone F, Higgins P S, Bissonnette N P, et al. The cross-aisle seismic performance of storage rack base connections[J]. Journal of Constructional Steel Research, 2016, 122:520-531.
[65] Lau H H, Beale R G, Godley M H R. The influence of the column base connectivity on the stability of columns and frames[C]//Proceedings of Sixth International Conference on Steel & Aluminium Structures. United Kingdom:Oxford Brookes University, 2007.
[66] 王越. 钢货架结构柱脚节点静力性能研究[D]. 上海:同济大学, 2016. Wang Yue. Research on static behaviour of base plates of steel storage racks[D]. Shanghai:Tongji University, 2016. (in Chinese)
[67] Huang Z, Zhao X, Wang Y. Experimental investigations into base-plate upright connections of steel storage racks[C]//Proceedings of Eighth International Conference on Thin-Walled structures. Portugal:Lisbon, 2018.
[68] Baldassino N, Zandonini R. Performance of base-plate connections of steel storage pallet racks[C]//Proceedings of Fifth International Conference on Coupled Instabilities in Metal Structures (CIMS2008), Gregory J. Hancock Symposium, Sydney, Australia, 2008.
[69] Gilbert B P, Rasmussen K J R. Determination of the base plate stiffness and strength of steel storage racks[J]. Journal of Constructional Steel Research, 2011, 67(6):1031-1041.
[70] Godley M H R, Beale R G, Feng X. Rotational stiffnesses of semi-rigid baseplates[C]//Proceedings of Fourteenth International Specialty Conference on Cold-Formed Steel Structures, United States:University of Missouri-Rolla, 1998.
[71] 武振宇, 成博. 组装式钢货架柱脚节点的受力性能研究[J]. 深圳大学学报(理工版), 2014, 31(5):513-520. Wu Zhenyu, Cheng Bo. Behaviors of column base connections in assembled steel storage racks[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(5):513-520. (in Chinese)
[72] Firouzianhaji A, Saleh A, Samali B. Non-linear finite element analysis of base plate connections used in industrial pallet racking structures[C]. Australasian Structural Engineering Conference(ASEC), Auckland, New Zealand, 2014.
[73] Teh L H, Hancock G J, Clarke M J. Analysis and design of double-sided high-rise steel pallet rack frames. Journal of Structural Engineering, 2004, 130(7):1011-1021.
[74] Godley M H R, Beale R G, Feng X. Analysis and design of down-aisle pallet rack structures[J]. Computers & Structures, 2000, 77(4):391-401.
[75] Baldassino N, Bernuzzi C. Analysis and behaviour of steel storage pallet racks[J]. Thin-Walled Structures, 2000, 37(4):277-304.
[76] Beale RG, Godley MHR. Sway analysis of spliced pallet rack structures[J]. Computers & Structures, 2004, 82(23/24/25/26):2145-2156.
[77] Abdel-Jaber M S, Beale R G, Godley M H R. Numerical study on semi-rigid racking frames under sway[J]. Computers & Structures, 2005, 83(28/29/30):2463-2475.
[78] Lewis G M. Stability of rack structures[J]. Thin-walled Structures, 1991, 12(2):163-174.
[79] Lewis G M. Imperfection sensitivity of structures with semi-rigid joints[J]. Thin-walled Structures, 1997, 27(2):187-201.
[80] Feng X. The influence of semi-rigid connections on the behaviour of slender structures. PhD thesis[D]. Oxford:Oxford Brookes University, UK, 1994.
[81] Sarawit A T, Pekoz T. Notional load method for industrial steel storage racks[J]. Thin-Walled Structures, 2006, 44(12):1280-1286.
[82] Al Qarud F, Shatnawi A, Abdel-Jaber M S, et al. Influence of partial loading on the behavior of pallet rack structures[J]. Advanced Steel Construction, 2010, 6(1):619-634.
[83] Freitas A M S, Souza F T, Freitas M S R. Analysis and behavior of steel storage drive-in racks[J]. Thin-walled Structures, 2010, 48(2):110-117.
[84] Sangle K K, Bajoria K M, Talicotti Rstu S. Elastic stability analysis of cold-formed pallet rack structures with semi-rigid connections[J]. Journal of Constructional Steel Research, 2012, 71:245-262.
[85] Rasmussen K J R, Gilbert B P. Analysis-based 2D design of steel storage racks[J]. International Journal of Structural Stability and Dynamics, 2011, 11(5):929-947.
[86] Rasmussen K J R, Gilbert B P. Analysis-based design provisions for steel storage racks[J]. Journal of Structural Engineering, 2012, 139(5):849-859.
[87] Rasmussen K J R, Zhang H, Cardoso F S. On the next generation of design specifications for steel structures[C]//Insights and Innovations in Structural Engineering, Mechanics and Computation, 2016.
[88] Cardoso F S, Rasmussen K J R. Finite element (FE) modelling of storage rack frames[J]. Journal of Constructional Steel Research, 2016, 126:1-14.
[89] EN 16681, Steel static storage systems-Adjustable pallet racking systems-Principles for seismic design[S]. European Committee for Standardization (CEN), Brussels, Belgium, 2016.
[90] Castiglioni C A, Kanyilmaz A, Bernuzzi C, et al. Seisracks 2:Seismic behaviour of steel storage pallet racking systems[R]. European Commission Technical report, Directorate-General for Research EUR 27583 EN, 2014.
[91] John A, Blume & Associates. Seismic investigation of steel industrial storage racks[R]. San Francisco, CA:Report prepared for the Rack Manufacturer's Institute, 1973.
[92] Krawinkler H, Cofie N G, Astiz M A, et al. Experimental study on the seismic behavior of industrial storage racks[R]. Report No.41. The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, California, 1979.
[93] Chen C K. Seismic study on industrial steel storage racks[R]. National Science Foundation, URS/John A. Blume and Associate Engineers, 1980.
[94] Filiatrault A, Higgins P S, Wanitkorkul A. Experimental stiffness and seismic response of pallet-type steel storage rack connectors[J]. Practice Periodical on Structural Design and Construction, 2006, 11(3), 161-170.
[95] Filiatrault A, Higgins P S, Wanitkorkul A, et al. Experimental stiffness of pallet-type steel storage rack teardrop connectors[J]. Practice Periodical on Structural Design and Construction, 2007, 12(4):210-215.
[96] Gilbert B P, Rasmussen K J. Recent research on the design and behaviour of drive-in steel storage racking systems[J]. Steel Construction, 2011, 4(4):232-241.
[97] Kanyilmaz A, Brambilla G, Chiarelli G P, et al. Assessment of the seismic behaviour of braced steel storage racking systems by means of full scale push over tests[J]. Thin-Walled Structures, 2016, 107:138-155.
[98] Kanyilmaz A, Castiglioni C A, Brambilla G, et al. Experimental assessment of the seismic behavior of unbraced steel storage pallet racks[J]. Thin-Walled Structures, 2016, 108:391-405.
[99] Bernuzzi C, Di Gioia A, Gabbianelli G, et al. Pushover analyses of hand-loaded steel storage shelving racks[J]. Journal of Earthquake Engineering, 2017, 21(8):1256-1282.
[100] Filiatrault A, Higgins P S, Wanitkorkul A, et al. Experimental seismic response of base isolated pallet-type steel storage racks[J]. Earthquake Spectra, 2008, 24(3):617-639.
[101] Sideris P, Filiatrault A, Leclerc M, et al. Experimental investigation on the seismic behavior of palletized merchandise in steel storage racks[J]. Earthquake Spectra, 2010, 26(1):209-233.
[102] Bajoria K M, Sangle K K, Talicotti R S. Modal analysis of cold-formed pallet rack structures with semi-rigid connections[J]. Journal of Constructional Steel Research, 2010, 66(3):428-441.
[103] EN 1998-1:2004, Eurocode 8:design of structures for earthquake resistance-part 1:general rules, seismic actions and rules for buildings[S]. European Committee for Standardization, 2005.
[104] ATC. Tentative provisions for the development of seismic regulations for buildings[S]. ATC-3-06. Applied Technology Council, Redwood City, California, 1978:45-53.
[105] Code U B. UBC. 1997:Uniform building code[S]. International Conference of Building Officials, Uniform Building Code, Whittier, California, 1997.
[106] Yee R K, Chan D H. Structural behavior of storage rack under seismic ground motion[C]//Proceedings of the 3rd Annual Disaster Resistant California Conference. California, USA, 2003.
[107] Bajoria K M, Sangle K K. Capacity based design of cold formed storage rack structures under seismic load for rigid and semi rigid connections[C]. The 14th World Conference on Earthquake Engineering, 2008:12-17.
[108] 李秋云. 钢货架结构整体抗震性能研究[D]. 上海:同济大学, 2017. Li Qiuyun. Research on the seismic performance of steel storage rack structures[D]. Shanghai:Tongji University, 2017. (in Chinese)
[109] Hervé Degée and Barbara Rossi. Geometrically nonlinear analysis of steel storage racks submitted to earthquake loading[J]. International Journal of Structural Stability and Dynamics, 2011, 11(5):949-967.
[110] Filiatrault A, Bachman R E, Mahoney M G. Performance-based seismic design of pallet-type steel storage racks[J]. Earthquake Spectra, 2006, 22(1):47-64.
[111] Bernuzzi C, Simoncelli M. An advanced design procedure for the safe use of steel storage pallet racks in seismic zones[J]. Thin-Walled Structures, 2016, 109:73-87.
[112] Bernuzzi C, Simoncelli M. Steel storage pallet racks in seismic zones:Advanced vs. standard design strategies[J]. Thin-Walled Structures, 2017, 116:291-306.
[1] 邱天琦, 杨军, 吴志轩, 沈兆普, 梁宇钒. 复理石顺层边坡最危险岩层倾角及简化的单一层面模型[J]. 工程力学, 2019, 36(S1): 217-221,228.
[2] 蔚博琛, 张敬书, 于晓旭, 柳涛. 楼梯间外纵墙一字形墙肢的稳定性问题及处理[J]. 工程力学, 2019, 36(8): 133-140.
[3] 范峰, 马会环, 马越洋. 半刚性节点网壳结构研究进展及关键问题[J]. 工程力学, 2019, 36(7): 1-7,29.
[4] 杨智勇, 李典庆, 曹子君, 唐小松. 考虑土质边坡多失效模式的区域概率风险分析方法[J]. 工程力学, 2019, 36(5): 216-225,234.
[5] 庞辉, 杨军杰, 刘雪. 基于T-S模糊模型的主动悬架滑模容错控制器设计[J]. 工程力学, 2019, 36(2): 229-238,248.
[6] 汤宏伟, 钟宏志. 考虑杆件初弯曲的网壳弹塑性稳定性的弱形式求积元分析[J]. 工程力学, 2019, 36(1): 165-174.
[7] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[8] 刘兴旺, 童根树, 李瑛, 胡焕, 陈东. 深基坑组合型钢支撑梁稳定性分析[J]. 工程力学, 2018, 35(4): 200-207,218.
[9] 唐贞云, 郭珺, 洪越, 李易, 李振宝. 多自由度实时子结构试验系统稳定性分析方法[J]. 工程力学, 2018, 35(3): 22-29.
[10] 李鹏飞, 朱其志, 顾水涛, 倪涛. 岩石类材料裂隙形成和扩展的相场方法模拟[J]. 工程力学, 2018, 35(3): 41-48.
[11] 文颖, 陶蕤. 基于加速度泰勒展开的动力学方程显式积分方法[J]. 工程力学, 2018, 35(11): 26-34.
[12] 潘天林, 吴斌. 基于桁架单元的能量一致积分方法[J]. 工程力学, 2018, 35(10): 1-9,36.
[13] 潘兆东, 谭平, 周福霖. 基于保性能自适应RBF神经网络的MR半主动非线性鲁棒分散控制[J]. 工程力学, 2018, 35(10): 47-55.
[14] 刘欣欣, 唐春安, 龚斌, 于庆磊. 基于DDD离心加载法的黑山铁矿西帮边坡稳定性研究[J]. 工程力学, 2018, 35(1): 191-200.
[15] 王多智, 李文亮, 支旭东. 考虑有檩体系屋面系统的网壳结构静力稳定性分析[J]. 工程力学, 2017, 34(增刊): 71-77,98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日