工程力学 ›› 2019, Vol. 36 ›› Issue (2): 36-44.doi: 10.6052/j.issn.1000-4750.2018.10.ST07

• 土木工程学科 • 上一篇    下一篇

装配整体式与现浇剪力墙结构抗震性能对比分析

白国良1, 秦朝刚1, 徐亚洲1, 苏宁粉1, 吴涛2, 孙煜喆3   

  1. 1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055;
    2. 长安大学建筑工程学院, 陕西, 西安 710061;
    3. 新疆城建集团股份有限公司, 新疆乌鲁木齐市 830063
  • 收稿日期:2018-07-02 修回日期:2018-10-09 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 白国良(1955-),男,陕西人,教授,博士,主要从事工程结构抗震性能研究(E-mail:guoliangbai@126.com). E-mail:guoliangbai@126.com
  • 作者简介:秦朝刚(1989-),男,陕西人,博士生,主要从事工程结构抗震性能研究(E-mail:qinchaogang415@126.com);徐亚洲(1978-),男,陕西人,教授,博士,主要从事动力可靠度分析研究(E-mail:yazhou.xhu@gmail.com);苏宁粉(1981-),女,陕西人,讲师,博士,从事高层建筑结构抗震性能研究(E-mail:suningfen@163.com);吴涛(1976-),男,安徽人,教授,博士,从事工程结构抗震性能研究(E-mail:wutao760922@163.com);孙煜喆(1970-),男,新疆维吾尔自治区人,高工,博士生,主要从事工程结构抗震性能研究(E-mail:1269859583@qq.com).
  • 基金资助:
    国家自然科学基金项目(51408456);陕西省科技重点项目(2015KTZDSF03-05-01,2015KTZDSF03-04,2014SZS04-Z01);新疆城建(集团)股份有限公司科技计划项目(XJCJ2016-03)

CONTRASTIVE ANALYSIS ON ASEISMIC PERFORMANCES BETWEEN MONOLITHIC PRECAST CONCRETE AND CAST-IN-PLACE SHEAR WALL STRUCTURE

BAI Guo-liang1, QIN Chao-gang1, XU Ya-zhou1, SU Ning-fen1, WU Tao2, SUN Yu-zhe3   

  1. 1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
    2. College of Architecture & Civil Engineering, Chang'an University, Xi'an 710061, China;
    3. Xinjiang Urban Construction(Group) Co., Ltd, Urumqi Municipality 830063, China
  • Received:2018-07-02 Revised:2018-10-09 Online:2019-02-22 Published:2019-02-22

摘要: 为研究装配整体式剪力墙结构的抗震性能,设计制作了参数、加载制度等条件相同的12层装配整体式和现浇剪力墙1∶5缩尺模型结构,并对其进行了振动台试验。研究了两模型结构受地震作用时的裂缝形态、破坏机理,自振频率、振型和阻尼比等动力特性,楼层剪力、倾覆力矩、位移,最大层间位移角和结构延性系数等地震响应参数,并进行了对比分析。结果表明:装配整体式结构连接部位存在初始损伤,在首次地震波输入后,其自振频率下降较大,而二者的振型系数和阻尼比变化趋势基本一致;在弹性阶段,两模型结构的裂缝形态、楼层剪力、倾覆力矩、楼层位移和层间位移角的变化规律基本一致,随着输入地震波加速度峰值的增大,其量值无明显差异;结构进入塑性阶段,两模型结构的裂缝形态及其形成机理的差异,造成现浇结构的自振频率最终降低幅度、层间位移角大于装配整体式结构。两模型结构的地震响应均满足“小震不坏、中震可修、大震不倒”的抗震设防目标。

关键词: 装配整体式结构, 现浇结构, 振动台试验, 动力特性, 抗震性能

Abstract: To study the aseismic behavior of a monolithic precast concrete structure (MPCS), two 1:5 scale models of 12-storey monolithic precast concrete and cast-in-place shear wall structures (CIPS) made under the same conditions were tested by a shaking table. The crack pattern, failure mechanism, natural frequency, vibration mode and damping ratio, storey shear, overturning moment, inter-storey drift, maximum interlayer displacement angle, and ductility coefficient were analyzed contrastively. For the initial damage of the connection in a monolithic precast concrete structure, the natural frequency decreased obviously after the first earthquake excitation. While the vibration modes and damping ratios were similar. In the elastic stage, the storey shear, overturning moment, inter-storey drift, and maximum interlayer displacement angle changed along the increasing of the PGA of input seismic waves, and the values were similar too. In the plastic stage, the cracks and the distribution of the two model structures were different. As the differences of damage mechanism and crack distribution, the natural frequency and maximum interlayer displacement angle of cast-in-place structure were greater than that of the monolithic precast concrete structure. The aseismic parameters of the model structures could conform to the 3-level design requirement for the fortification against an earthquake.

Key words: monolithic precast concrete structure, cast-in-place structure, shaking table test, dynamic characteristics, seismic behavior

中图分类号: 

  • TU352.11
[1] Park R, Alcocer S M, Boen T, et al. FIB Bulletin No. 74, Planning and design handbook on precast building structures[R]. Lausanne, Switzerland:International Federation for Structural Concrete, 2014:1-22.
[2] Priestley M J, Srithaaran S, Conley J R, et al. Preliminary results and conclusions from the PRESSS five-story precast concrete test building[J]:PCI Journal, 1999, 44(6):42-67.
[3] Oliva M G, Shahrooz В M. Shaking table tests of wet jointed precast panel walls[C]//Proceedings of Eighth World Conference on Earthquake Engineering. San Francisco:Prentice-Hall, 1984, 6:717-724.
[4] Priestley M J. Direct displacement-based design of precast/prestressed concrete buildings[J]. PCI Journal, 2002, 47(6):66-79.
[5] Holden T, Restrepo J, Mander J B. Seismic performance of precast reinforced and prestressed concrete walls[J]. Journal of Structural Engineering, 2003, 129(3):286-296.
[6] JGJ 1-2014, 装配式混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2014. JGJ 1-2014, Technical specification for precast concrete structures[S]. Beijing:China Architecture & Building Press, 2014. (in Chinese)
[7] 陈云刚, 刘佳斌, 郭正兴, 等. 装配式剪力墙水平拼缝钢筋浆锚搭接抗震性能试验[J]. 哈尔滨工业大学学报, 2013, 45(6):83-89. Chen Yungang, Liu Jiabin, Guo Zhengxing, et al. Test on seismic performance of precast shear wall with reinforcements grouted in holes and spliced indirectly in horizontal connections[J]. Journal of Harbin Institute of Technology, 2013, 45(6):83-89. (in Chinese)
[8] 钱稼茹, 彭媛媛, 张景明, 等. 竖向钢筋套筒浆锚连接的预制剪力墙抗震性能试验[J]. 建筑结构, 2011, 41(2):1-6. Qian Jiaru, Peng Yuanyuan, Zhang Jingming, et al. Tests on seismic behavior of precast shear walls with vertical reinforcements spliced by grout sleeves[J]. Building Structure, 2011, 41(2):1-6. (in Chinese)
[9] 钱稼茹, 杨新科, 秦珩, 等. 竖向钢筋采用不同连接方法的预制钢筋混凝土剪力墙抗震性能试验[J]. 建筑结构学报, 2011, 32(6):51-59. Qian Jiaru, Yang Xinke, Qin Heng, et al. Tests on seismic behavior of precast shear walls with various methods of vertical reinforcement splicing[J]. Journal of Building Structures, 2011, 32(6):51-59. (in Chinese)
[10] 陈再现, 姜洪斌, 张家齐, 等.预制钢筋混凝土剪力墙结构拟动力子结构试验研究[J]. 建筑结构学报, 2011, 32(6):41-50. Chen Zaixian, Jiang Hongbin, Zhang Jiaqi, et al. Pseudo-dynamic substructure test on precast reinforced concrete shear wall structure[J]. Journal of Building Structures, 2011, 32(6):41-50. (in Chinese)
[11] 尹之潜, 朱玉莲, 杨淑文, 等. 高层装配式大板结构模拟地震试验[J]. 土木工程学报, 1996, 29(3):57-64. Yin Zhiqian, Zhu Yulian, Yang Shuwen, et al. Earthquake simulation tests of tall buildings with precast large panel[J]. China Civil Engineering Journal, 1996, 29(3):57-64. (in Chinese)
[12] 钱稼茹, 韩文龙, 赵作周, 等. 钢筋套筒灌浆连接装配式剪力墙结构三层足尺模型子结构拟动力试验[J]. 建筑结构学报, 2017, 38(3):26-38. Qian Jiaru, Han Wenlong, Zhao Zuozhou, et al. Pseudo-dynamic substructure test on a 3-story full-scale model of prefabricated concrete shear wall structure with rebars splicing by grout sleeves[J]. Journal of Building Structures, 2017, 38(3):26-38. (in Chinese)
[13] 王维, 李爱群, 贾洪, 等. 预制混凝土剪力墙隔震结构振动台试验研究[J]. 建筑结构学报, 2015, 36(6):35-43. Wang Wei, Li Aiqun, Jia Hong, et al. Shaking table test of precast concrete shear wall isolation structure[J]. Journal of Building Structures, 2015, 36(6):35-43. (in Chinese)
[14] 张伟林, 沈小璞, 吴志新, 等. 叠合板式剪力墙T型、L型墙体抗震性能试验研究[J]. 工程力学, 2012, 29(6):196-201. Zhang Weilin, Shen Xiaopu, Wu Zhixin, et al. Experimental study of seismic performance on T and L types superimposed-slab-shear-walls structure[J]. Engineering Mechanics, 2012, 29(6):196-201. (in Chinese)
[15] Einea A, Salmon D C, Fogarasi G J, et al. State-of the-art of precast concrete sandwich panels[J]. PCI Journal, 1991, 36(6):78-98.
[16] 白国良, 秦朝刚, 徐亚洲, 等. 装配整体式剪力墙模型结构振动台试验研究[J]. 建筑结构学报, 2018, 39(2):17-27. Bai Guoliang, Qin Chaogang, Xu Yazhou, et al. Shaking table test on monolithic precast concrete shear wall model structure[J]. Journal of Building Structures, 2018, 39(2):17-27. (in Chinese)
[17] 周颖, 吕西林. 建筑结构振动台模型试验方法与技术[M]. 北京:科学出版社, 2012:3-11. Zhou Ying, Lü Xilin. Shaking table model test method and technology of building structure[M]. Beijing:Science Press, 2012:3-11. (in Chinese)
[18] Buckingham E. On physical similar system; illustrations of the use of dimensional equations[J]. Physical Review, 1914, 4(4):345-376.
[19] 湖南大学, 太原工业大学, 福州大学. 建筑结构试验[M]. 第二版. 北京:中国建筑工业出版社, 1991:152-163. Hunan University, Taiyuan University of Technology, Fuzhou University. Building structure test[M]. 2nd ed. Beijing:China Architecture & Building Press, 1991:152-163. (in Chinese)
[20] 周颖, 吕西林, 卢文胜.不同结构的振动台试验模型等效设计方法[J].结构工程师, 2006, 22(4):37-40. Zhou Ying, Lü Xilin, Lu Wensheng. Shaking table test model design in different structures[J]. Structural Engineers, 2006, 22(4):37-40. (in Chinese)
[21] 钱稼茹, 彭媛媛, 张景明, 等. 竖向钢筋套筒浆锚连接的预制剪力墙抗震性能试验[J]. 建筑结构, 2011, 41(2):1-6. Qian Jiaru, Peng Yuanyuan, Zhang Jingming, et al. Tests on seismic behavior of precast shear walls with vertical reinforcements spliced by grout sleeves[J]. Building Structure, 2011, 41(2):1-6. (in Chinese)
[22] 郑永峰, 郭正兴. 变形灌浆套筒连接性能试验研究及有限元分析[J]. 建筑结构学报, 2016, 37(3):94-102. Zheng Yongfeng, Guo Zhengxing. Experimental study and finite element analysis on behavior of deformed gout-filled pipe splice[J]. Journal of Building Structures, 2016, 37(3):94-102. (in Chinese)
[23] JGJ/T 101-2015, 建筑抗震试验规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T 101-2015, Specification for seismic test of buildings[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[24] Chakrabarti S C, Nayak G C, Paul D K. Shear characteristics of cast-in-place vertical joints in story-high precast wall assembly[J]. Structural Journal, 1988, 85(l):30-45.
[25] 乔普拉(美). 结构动力学:理论及其在地震工程中的应用[M]. 第二版. 谢礼立, 吕大刚, 等译. 北京:高等教育出版社, 2007, 59. Chopra A K. Dynamics of structure theory and applications to earthquake engineering[M]. 2nd ed. translated by Xie Lili, Lü Dagang, et al. Beijing:Higher Education Press, 2007, 59. (in Chinese)
[1] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[2] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[3] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[4] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[5] 郑文彬, 张建伟, 曹万林. 单排配筋L形截面剪力墙振动台试验研究[J]. 工程力学, 2018, 35(S1): 134-139.
[6] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[7] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[8] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[9] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
[10] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54-63,72.
[11] 支旭东, 张英楠, 范峰, 沈世钊. 单层球面网壳的多重地震效应研究[J]. 工程力学, 2018, 35(9): 107-113,125.
[12] 孙建, 邱洪兴, 谭志成, 蒋洪波. 采用螺栓连接的工字形全装配式RC剪力墙试验研究[J]. 工程力学, 2018, 35(8): 172-183,191.
[13] 徐龙河, 王坤鹏, 谢行思, 李忠献. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7): 39-46.
[14] 郑山锁, 张晓辉, 黄威曾, 赵旭冉. 近海大气环境下锈蚀平面钢框架抗震性能试验研究及有限元分析[J]. 工程力学, 2018, 35(7): 62-73,82.
[15] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日