工程力学 ›› 2019, Vol. 36 ›› Issue (3): 1-23.doi: 10.6052/j.issn.1000-4750.2018.10.ST03

• 综述 •    下一篇

预制桥墩体系抗震性能研究进展:新材料、新理念、新应用

王景全1, 王震1, 高玉峰2, 诸钧政1   

  1. 1. 东南大学土木工程学院, 南京 211189;
    2. 河海大学岩土工程研究所, 南京 210098
  • 收稿日期:2018-06-14 修回日期:2018-10-08 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 王景全(1976-),男,河南南阳人,教授,博士,院长,主要从事桥梁抗震、新材料应用的研究(E-mail:wangjingquan@seu.edu.cn). E-mail:wangjingquan@seu.edu.cn
  • 作者简介:王震(1990-),男,山东菏泽人,博士生,主要从事新材料在装配式结构中应用的研究(E-mail:sdkj199017@163.com);高玉峰(1966-),男,安徽滁州人,教授,博士,院长,主要从事岩土工程的研究(E-mail:yfgao66@163.com);诸钧政(1993-),男,浙江温州人,硕士生,主要新材料在装配式结构中应用的研究(E-mail:446961836@qq.com)
  • 基金资助:
    国家自然科学基金项目(51438003);中国铁路总公司科技研究开发计划重大课题项目(2017G006-C);东南大学优秀博士学位论文培育基金项目(YBPY1707);江苏高校优势学科建设工程资助项目(CE02-1-4)

REVIEW ON ASEISMIC BEHAVIOR OF PRECAST PIERS: NEW MATERIAL, NEW CONCEPT, AND NEW APPLICATION

WANG Jing-quan1, WANG Zhen1, GAO Yu-feng2, ZHU Jun-zheng1   

  1. 1. School of Civil Engineering, Southeast University, Nanjing 210096, China;
    2. Geotechnical Research Institute, Hohai University, Nanjing 210098, China
  • Received:2018-06-14 Revised:2018-10-08 Online:2019-03-29 Published:2019-03-16

摘要: 预制桥墩体系具有快速施工优势,在非震区、低烈度区中已得到较广泛应用,但因对其抗震性能缺乏充分认识,导致预制桥墩体系在中高烈度区的应用受到限制。该文根据抗震性能的不同,将预制桥墩体系分为“等同现浇”和“非等同现浇”两类,其中“等同现浇”预制桥墩又按照连接形式的不同分为套筒灌浆连接、波纹管灌浆连接、预留槽孔的灌浆连接、承插式连接、现浇湿接缝连接;“非等同现浇”预制桥墩按照有无专门耗能装置可分为两类;系统梳理了每种类型预制桥墩抗震性能的研究现状及典型工程应用。该文重点报道了超高性能混凝土、纤维增强复合材料和形状记忆合金3种高性能材料用于提高预制桥墩抗震性能的研究现状,指出了3种高性能材料用于预制桥墩体系中的合理方式。该文总结出将韧性抗震理念融入预制桥墩体系的两种方法:外置可更换耗能装置和内置机械连接的耗能钢筋,并对采用这两种方法的预制桥墩抗震性能研究现状进行了介绍。基于对预制桥墩体系抗震性能研究成果的整理,作者介绍了预制桥墩体系在更高抗震需求、更高刚度需求、更高使用寿命需求、更高环境保护需求4类桥梁中的应用前景,并指出了这些新应用可能带来的新课题。

关键词: 预制桥墩体系, 抗震性能, 等同现浇, 非等同现浇, 超高性能混凝土, 纤维增强复合材料, 形状记忆合金, 抗震韧性

Abstract: With accelerated bridge construction, the precast pier system has been widely applied in non and low seismic zone, but limited in moderate and high seismic zone by lack of knowledge about its aseismic performance. This paper classifies precast pier systems into two types: emulative precast piers and nonemulative precast piers, based on their aseismic performance. On one hand, the emulative precast pier is further categorized into grouted sleeve connection, grouted steel corrugated duct connection, pocket connection, socket connection, and cast-in-place wet joint connection by the type of connection. On the other hand, the nonemulative precast pier is further categorized into two types based on whether special energy dissipation device is used or not. The research about aseismic performance and typical engineering application are systematically reviewed for each of these categories. Three high performance materials, including Ultra high-performance concrete, fiber reinforced polymer and shape memory alloy, are reported for the research status of their application in the precast pier system to improve their aseismic performance. The proper way is pointed out to apply the three high performance materials in the precast pier system. Two methods are summarized to apply the new concept of earthquake resilience in the precast pier system, which are an external replaceable energy dissipation device and an internal energy dissipation bar with mechanical connection. The research review is conduct for the aseismic performance of precast piers using the two-connection ways. Based on the summarization of the aseismic performance of a precast pier system, the precast pier system is proposed to apply in the four types of bridges, including higher aseismic requirement, larger stiffness requirement, longer service life requirement, and stricter environmental protection requirement. The new issues caused by the new application fields are pointed out.

Key words: precast pier system, seismic performance, emulative, nonemulative, super high-performance concrete, fiber reinforced polymer, shape memory alloy, earthquake resilience

中图分类号: 

  • TU375
[1] Ericson A C. Emulation design of precast concrete[J]. The Construction Specifier, 1994, 47(10):96-103.
[2] Kurama Y C, Sritharan S, Fleischman R B, et al. Seismic-resistant precast concrete structures:state of the art[J]. Journal of Structural Engineering, 2018, 144(4):03118001.
[3] Marsh M L, Wernli M, Garrett B E, et al. Application of accelerated bridge construction connections in moderate-to-high seismic regions[R]. Washington:Transportation Research Board, 2011.
[4] Haber Z B, Saiidi M S, Sanders D H. Seismic performance of precast columns with mechanically spliced column-footing connections[J]. ACI Structural Journal, 2014, 111(3):639-650.
[5] Ameli M J, Parks J E, Brown D N, et al. Seismic evaluation of grouted splice sleeve connections for reinforced precast concrete column-to-cap beam joints in accelerated bridge construction[J]. PCI Journal, 2015, 60(2):80-103.
[6] Li T, Qu H, Wang Z, et al. Seismic performance of precast concrete bridge columns with quasi-static cyclic shear test for high seismic zones[J]. Engineering Structures, 2018, 166:441-453.
[7] Ameli M J, Brown D N, Parks J E, et al. Seismic column-to-footing connections using grouted splice sleeves[J]. ACI Structural Journal, 2016, 113(5):1021-1030.
[8] Haber Z B, Mackie K R, Al-Jelawy H M. Testing and analysis of precast columns with grouted sleeve connections and shifted plastic hinging[J]. Journal of Bridge Engineering, 2017, 22(10):04017078.
[9] Ameli M J, Pantelides C P. Seismic analysis of precast concrete bridge columns connected with grouted splice sleeve connectors[J]. Journal of Structural Engineering, 2016, 143(2):04016176.
[10] Haber Z B, Saiidi M S, Sanders D H. Behavior and simplified modeling of mechanical reinforcing bar splices[J]. ACI Structural Journal, 2015, 112(2):179-188.
[11] Qu H, Li T, Wang Z, et al. Investigation and verification on seismic behavior of precast concrete frame piers used in real bridge structures:Experimental and numerical study[J]. Engineering Structures, 2018, 154:1-9.
[12] Culmo M P. Connection details for prefabricated bridge elements and systems[R]. Washington:Federal Highway Administration, 2009.
[13] Littleton P, Mallela J. Iowa demonstration project:accelerated bridge construction on US 6 over keg creek[R]. Washington:Federal Highway Administration, 2013.
[14] Brenes F J. Anchorage of grouted vertical duct connections for precast bent caps[D]. Austin:The University of Texas at Austin, 2005.
[15] Khaleghi B, Schultz E, Seguirant S, et al. Accelerated bridge construction in Washington State:From research to practice[J]. PCI Journal, 2012, 57(4):34-49.
[16] Restrepo J L. Seismic behavior of connections between precast concrete elements[D]. Christchurch:Department of Civil Engineering, University of Canterbury, 1992.
[17] Darwin D and Zavaregh S S. Bond strength of grouted reinforcing bar[J]. ACI Structural Journal, 1996, 93(4):486-495.
[18] Raynor D J, Lehman D E, Stanton J F. Bond-slip response of reinforcing bars grouted in ducts[J]. ACI Structural Journal, 2002, 99(5):568-576.
[19] Brenes F J, Wood S L, Kreger M E. Anchorage requirements for grouted vertical-duct connectors in precast bent cap systems[R]. Austin:Center for Transportation Research, University of Texas at Austin, 2006.
[20] Matsumoto E E, Waggoner M C, Kreger M E, et al. Development of a precast concrete bent-cap system[J]. PCI Journal, 2008, 53(3):74-99.
[21] Steuck K P, Eberhard M O, Stanton J F. Anchorage of large-diameter reinforcing bars in ducts[J]. ACI Structural Journal, 2009, 106(4):506-513.
[22] Pang J B K, Eberhard M O, Stanton J F. Large-bar connection for precast bridge bents in seismic regions[J]. Journal of Bridge Engineering, 2009, 15(3):231-239.
[23] Matsumoto E. Emulative precast bent cap connections for seismic regions:component tests report-preliminary[R]. Sacramento:Califormia State University, 2010.
[24] Mashal M, White S, Palermo A. Quasi-static cyclic tests of emulative precast segmental bridge piers (E-PSBP)[C]//Proceedings of the 2013 NZSEE conference, Wellington, New Zealand, New Zealand Society for Earthquake Engineering, 2013.
[25] 宋年华. 灌浆波纹管连接预制拼装RC桥墩-承台节点抗震性能[D]. 北京:北京工业大学, 2016. Song Nianhua. Seismic performance of precast assembly RC bridge pier columns-pile cap joints based on grouted corrugated duct connection[D]. Beijing:Beijing University of Technology, 2016. (in Chinese)
[26] 王志强, 卫张震, 魏红一, 等. 预制拼装联接件形式对桥墩抗震性能的影响[J]. 中国公路学报, 2017, 30(5):74-80. Wang Zhiqiang, Wei Zhangzhen, Wei Hongyi, et al. Influences of precast segmental connector forms on seismic performance of bridge pier[J]. China Journal of Highway Transport, 2017, 30(5):74-80. (in Chinese)
[27] Matsumoto E E. Emulative precast bent cap connections for seismic regions:component tests-cap pocket full ductility specimen (unit 3)[R]. Sacramento:California State University, 2009.
[28] Osanai Y, Watanabe F, Okamoto S. Stress transfer mechanism of socket base connections with precast concrete columns[J]. ACI Structural Journal, 1996, 93(3):266-276.
[29] Canha R M F, Campos G M, El Debs M K. Design model and recommendations of column-foundation connection through socket with rough interfaces[J]. Revista IBRACON de Estruturas e Materiais, 2012, 5(2):182-218.
[30] Campos G M, Canha R M F, El Debs M K. Design of precast columns bases embedded in socket foundations with smooth interfaces[J]. Revista IBRACON de Estruturas e Materiais, 2011, 4(2):304-323.
[31] White S, Palermo A. Quasi-static testing of posttensioned nonemulative column-footing connections for bridge piers[J]. Journal of Bridge Engineering, 2016, 21(6):04016025.
[32] Haraldsson O S, Janes T M, Eberhard M O, et al. Seismic resistance of socket connection between footing and precast column[J]. Journal of Bridge Engineering, 2013, 18(9):910-919.
[33] Kim D H, Kim M K, Zi G, et al. Experimental test and seismic performance of partial precast concrete segmental bridge column with cast-in-place base[J]. Engineering Structures, 2015, 100:178-188.
[34] Billington S L, Barnes R W, Breen J E. A precast segmental substructure system for standard bridges[J]. PCI Journal, 1999, 44(4):56-73.
[35] Billington S L, Barnes R W, Breen J E. Alternate substructure systems for standard highway bridges[J]. Journal of Bridge Engineering, 2001, 6(2):87-94.
[36] Ou Y C. Precast segmental post-tensioned concrete bridge columns for seismic regions[D]. San Diego:University of California at San Diego, 2002.
[37] Hewes J T, Priestley M J N. Seismic design and performance of precast concrete segmental bridge columns[R]. San Diego:University of California at San Diego, 2002.
[38] Yamashita R, Sanders D H. Seismic performance of precast unbonded prestressed concrete columns[J]. ACI Structural Journal, 2009, 106(6):821-830.
[39] 葛继平, 闫兴非, 王志强. 2段式预制拼装预应力混凝土桥墩的抗震性能[J]. 铁道科学与工程学报, 2017, 14(11):2390-2398. Ge Jiping, Yan Xingfei, Wang Zhiqiang. Seismic performance analysis of two-segment bridge columns with prestressing bars[J]. Journal of Railway Science and Engineering, 2017, 14(11):2390-2398. (in Chinese)
[40] 贾俊峰, 赵建瑜, 张强, 等. 后张预应力节段拼装CFST桥墩抗侧力学行为试验[J]. 中国公路学报, 2017, 30(3):236-245. Jia Junfeng, Zhao Jianyu, Zhang Qiang, et al. Experiment on lateral bearing behavior of post-tensioned segmental CFST bridge pier columns[J]. China Journal of Highway and Transport, 2017, 30(3):236-245. (in Chinese)
[41] Ou Y C, Wang P H, Tsai M S, et al. Large-scale experimental study of precast segmental unbonded posttensioned concrete bridge columns for seismic regions[J]. Journal of Structural Engineering, 2009, 136(3):255-264.
[42] Wang J C, Ou Y C, Chang K C, et al. Large-scale seismic tests of tall concrete bridge columns with precast segmental construction[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(12):1449-1465.
[43] 葛继平, 王志强. 干接缝节段拼装桥墩振动台试验研究[J]. 工程力学, 2011, 28(9):122-128. Ge Jiping, Wang Zhiqiang. Shake table tests of segmental bridge columns with match-cast dry joints[J]. Engineering Mechanics, 2011, 28(9):122-128. (in Chinese)
[44] 高婧, 葛继平, 林铁良. 干接缝节段拼装桥墩拟静力试验研究[J]. 振动与冲击, 2011, 30(4):211-216. Gao Jing, Ge Jiping, Lin Tieliang. Pseudo static test for pre-cast segmental bridge columns with dry joints[J]. Journal of Vibration and shock, 2011, 30(4):211-216. (in Chinese)
[45] 王军文, 张伟光, 艾庆华. PC与RC空心墩抗震性能试验对比[J]. 中国公路学报, 2015, 28(4):76-85. Wang Junwen, Zhang Weiguang, Ai Qinghua. Comparative experiment on seismic performance of PC and RC hollow piers[J]. China Journal of Highway and Transport, 2015, 28(4):76-85. (in Chinese)
[46] Bu Z Y, Ou Y C, Song J W, et al. Cyclic loading test of unbonded and bonded posttensioned precast segmental bridge columns with circular section[J]. Journal of Bridge Engineering, 2015, 21(2):04015043.
[47] Hung H H, Sung Y C, Lin K C, et al. Experimental study and numerical simulation of precast segmental bridge columns with semi-rigid connections[J]. Engineering Structures, 2017, 136:12-25.
[48] Cai Z K, Wang Z, Yang T Y. Experimental testing and modeling of precast segmental bridge columns with hybrid normal-and high-strength steel rebars[J]. Construction and Building Materials, 2018, 166:945-955.
[49] Nikbakht E, Rashid K. Investigation on seismic performance and functionality of self-centering post-tensioned segmental columns[J]. Structure and Infrastructure Engineering, 2018, 14(6):730-742.
[50] Shim C S, Chung C H, Kim H H. Experimental evaluation of seismic performance of precast segmental bridge piers with a circular solid section[J]. Engineering Structures, 2008, 30(12):3782-3792.
[51] Kim T H, Lee H M, Kim Y J, et al. Performance assessment of precast concrete segmental bridge columns with a shear resistant connecting structure[J]. Engineering Structures, 2010, 32(5):1292-1303.
[52] Sideris P, Aref A J, Filiatrault A. Quasi-static cyclic testing of a large-scale hybrid sliding-rocking segmental column with slip-dominant joints[J]. Journal of Bridge Engineering, 2014, 19(10):04014036.
[53] Mantawy I M, Thonstad T, Sanders D H, et al. Seismic performance of precast, pretensioned, and cast-in-place bridges:Shake table test comparison[J]. Journal of Bridge Engineering, 2016, 21(10):04016071.
[54] Wang Z, Qu H, Li T, et al. Quasi-static cyclic tests of precast bridge columns with different connection details for high seismic zones[J]. Engineering Structures, 2018, 158:13-27.
[55] 贾俊峰, 赵建瑜, 张强, 等. 螺栓连接预制拼装CFST桥墩抗震性能试验[J]. 中国公路学报, 2017, 30(12):242-249. Jia Junfeng, Zhao Jianyu, Zhang Qiang, et al. Cyclic testing on seismic behavior of precast segmental CFST bridge piers with bolted connections[J]. China Journal of Highway Transport, 2017, 30(12):242-249. (in Chinese)
[56] Gu C P, Ye G, Sun W. Ultrahigh performance concrete-properties, applications and perspectives[J]. Science China Technological Sciences, 2015, 58(4):587-599.
[57] Binard J P. UHPC:A game-changing material for PCI bridge producers[J]. PCI Journal, 2017, 62(2):34-46.
[58] Tazarv M, Saiidi M S. Design and construction of UHPC-filled duct connections for precast bridge columns in high seismic zones[J]. Structure and Infrastructure Engineering, 2017, 13(6):743-753.
[59] Yamanobe S, Saito K, Ichinomiya T, et al. Bilateral loading experiment on and analysis of concrete piers using mortar-jointed ultra-high-strength fibre-reinforced concrete precast formwork[J]. Structural Concrete, 2013, 14(3):278-290.
[60] Tazarv M, Saiidi M S. UHPC-filled duct connections for accelerated bridge construction of RC columns in high seismic zones[J]. Engineering Structures, 2015, 99:413-422.
[61] Shafieifar M, Azizinamini A. Alternative ABC connections utilizing UHPC[R]. Miami:Florida International University, 2016.
[62] Ichikawa S, Matsuzaki H, Moustafa A, et al. Seismic-resistant bridge columns with ultrahighperformance concrete segments[J]. Journal of Bridge Engineering, 2016, 21(9):04016049.
[63] Mohebbi A, Saiidi M S, Itani A M. Shake table studies and analysis of a precast two-column bent with advanced materials and pocket connections[J]. Journal of Bridge Engineering, 2018, 23(7):04018046.
[64] Yang C, Okumus P. Ultrahigh-performance concrete for posttensioned precast bridge piers for seismic resilience[J]. Journal of Structural Engineering, 2017, 143(12):04017161.
[65] Mohebbi A, Saiidi M S, Itani A M. Shake table studies and analysis of a PT-UHPC bridge column with pocket connection[J]. Journal of Structural Engineering, 2018, 144(4):04018021.
[66] Wang J Q, Wang Z, Zhang J, et al. Cyclic loading test of self-centering precast segmental unbonded posttensioned UHPFRC bridge columns[J]. Bulletin of Earthquake Engineering, 2018, 16(11):5227-5255.
[67] Zhu Z, Ahmad I, Mirmiran A. Seismic performance of concrete-filled FRP tube columns for bridge substructure[J]. Journal of Bridge Engineering, 2006, 11(3):359-370.
[68] ElGawady M, Booker A J, Dawood H M. Seismic behavior of posttensioned concrete-filled fiber tubes[J]. Journal of Composites for Construction, 2010, 14(5):616628.
[69] ElGawady M A, Sha'lan A. Seismic behavior of self-centering precast segmental bridge bents[J]. Journal of Bridge Engineering, 2010, 16(3):328-339.
[70] Moustafa A, ElGawady M A. Shaking table testing of segmental hollow-core FRP-concrete-steel bridge columns[J]. Journal of Bridge Engineering, 2018, 23(5):04018020.
[71] Motaref S, Saiidi M S, Sanders D. Shake table studies of energy-dissipating segmental bridge columns[J]. Journal of Bridge Engineering, 2013, 19(2):186-199.
[72] Varela S, Saiidi M S. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation[J]. Smart Materials and Structures, 2016, 25(7):075012.
[73] Saiidi M S, Wang H. Exploratory study of seismic response of concrete columns with shape memory alloys reinforcement[J]. ACI Structural Journal, 2006, 103(3):436-443.
[74] Tazarv M, Saiid Saiidi M. Low-damage precast columns for accelerated bridge construction in high seismic zones[J]. Journal of Bridge Engineering, 2015, 21(3):04015056.
[75] Roh H, Reinhorn A M. Hysteretic behavior of precast segmental bridge piers with superelastic shape memory alloy bars[J]. Engineering Structures, 2010, 32(10):3394-3403.
[76] Moon D Y, Roh H, Cimellaro G P. Seismic performance of segmental rocking columns connected with NiTi martensitic SMA bars[J]. Advances in Structural Engineering, 2015, 18(4):571-584.
[77] Nikbakht E, Rashid K, Hejazi F, et al. Application of shape memory alloy bars in self-centring precast segmental columns as seismic resistance[J]. Structure & Infrastructure Engineering, 2015, 11(3):297-309.
[78] 方东平, 李在上, 李楠,等. 城市韧性-基于"三度空间下系统的系统"的思考[J]. 土木工程学报, 2017,50(7):1-7.Fang Dongping, Li Zaishang, Li Nan, et al. Urban resilience:a perspective of system of systems in trio spaces[J]. China Civil Engineering Journal, 2017, 50(7):1-7. (in Chinese)
[79] Cimellaro G P, Reinhorn A M, Bruneau M. Framework for analytical quantification of disaster resilience[J].Engineering Structures, 2010, 32(11):3639-3649.
[80] 李建中, 管仲国. 桥梁抗震设计理论发展:从结构抗震减震到震后可恢复设计[J]. 中国公路学报, 2017,30(12):1-9.Li Jianzhong, Guan Zhongguo. Research progress on bridge seismic design:target from seismic alleviation to post-earthquake structural resilience[J]. China Journal of Highway and Transport, 2017, 30(12):1-9. (in Chinese)
[81] Seismic behavior of precast segmental UHPC bridge columns with replaceable external cover plates and internal dissipaters[J]. Engineering Structures, 2018,177:540-555.
[82] Chou C, Chen Y. Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strands[J]. Earthquake Engineering & Structural Dynamics,2010, 35(2):159-175.
[83] Marriott D, Pampanin S, Palermo A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering & Structural Dynamics,2009, 38(3):331-354.
[84] Marriott D, Pampanin S, Palermo A. Biaxial testing of unbonded post-tensioned rocking bridge piers with external replacable dissipaters[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(15):1723-1741.
[85] Sarti F, Palermo A, Pampanin S. Fuse-type external replaceable dissipaters:experimental program and numerical modeling[J]. Journal of Structural Engineering, 2016, 142(12):04016134.
[86] Andisheh K, Liu R, Palermo A, et al. Cyclic behavior of corroded fuse-type dissipaters for posttensioned rocking bridges[J]. Journal of Bridge Engineering, 2018, 23(4):04018008.
[87] Dong H, Du X, Han Q, et al. Performance of an innovative self-centering buckling restrained brace for mitigating seismic responses of bridge structures with double-column piers[J]. Engineering Structures, 2017,148:47-62.
[88] 韩强, 贾振雷, 何维利, 等. 自复位双柱式摇摆桥梁抗震设计方法及工程应用[J]. 中国公路学报, 2017,30(12):169-177.Han Qiang, Jia Zhen Lei, He Weili, et al. Seismic design method and its engineering application of self-centering double-column rocking bridge[J]. China Journal of Highway and Transport, 2017, 30(12):169-177. (in Chinese)
[89] Palermo A, Mashal M.Accelerated bridge construction (ABC) and seismic damage resistant technology:a New Zealand challenge[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2012, 45(3):123-134.
[90] Figg L, Pate W D. Precast concrete segmentalbridges-america's beautiful and affordable icons[J]. PCI Journal, 2004, 49(5):26-39.
[91] 朱万旭, 覃荷瑛, 甘国荣, 等. 港珠澳大桥节段预制桥墩高强钢筋联接锚固体系的关键技术研究[J]. 铁道学报, 2017, 39(5):118-124.Zhu Wanxu, Tan Heying, Gan Guorong, et al. Key techniques of prestressed high-strength rebar anchorage structure for segmental precast piers of Hong Kong-Zhuhai-Macao Bridge[J]. Journal of the China Railway Society, 2017, 39(5):118-124. (in Chinese)
[92] Muller J M, Barker J M. Design and construction of linn cove viaduct[J]. PCI Journal, 1985, 30(5):38-53.
[1] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[2] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 铰支桁架-框架结构抗震设计与性能研究[J]. 工程力学, 2019, 36(3): 105-113.
[3] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[4] 田小红, 苏明周, 连鸣, 李慎, 王凤. 高强钢组合K形偏心支撑钢框架抗震性能分析[J]. 工程力学, 2019, 36(3): 182-191.
[5] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[6] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[7] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[8] 徐明雪, 梁兴文, 于婧, 李林. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154,164.
[9] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[10] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[11] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[12] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[13] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[14] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[15] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日